Skip to main content
Log in

Electrochemical behaviour of low carbon steel in concentrated carbonate chloride brines

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The polarization curves of low carbon steel in deaerated carbonate bicarbonate buffers (pH 10.3) show three distinct regions: (a) an active region characterized by a Tafel slope of 125 ± 5 mV which is independent of the chloride concentration, (b) a gradual active to passive transition, and (c) a broad passive region. The addition of NaCl has a stronger effect on the passive than on the active region. For NaCl concentrations of 0.1 to 2 M, NaCl has only a small promoting effect (a reaction order of 0.1) on the anodic dissolution of the steel in the active region. Measurements of electrochemical impedance under free corrosion conditions confirm the above findings. The results are explained in terms of the more favourable formation of an iron hydroxy-carbonate complex (called green rust carbonate) than the formation of the corresponding green rust chloride complex. Passivity is attributed to the formation of a protective film containing both FeOOH and Fe2O3. It deteriorates with increasing chloride concentration and potential and improves with increase of buffer concentration. Evidence is also presented for metastable pitting, particularly in the presence of the lower chloride concentration, for example, 0.1, 0.2 and 0.5 M NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Garverik (Ed.), Corrosion in Petroleum Production Operations, in ‘Corrosion in the Petrochemical Industry', (ASM International, Metals Park, OH, 1994), p. 279.

  2. L.E. Newton and R.H. Hausler, (Eds), Houston, CO2 Corrosion in Oil and Gas Production', (NACE, Houstan, TX 1984).

    Google Scholar 

  3. Y.J. Tan, S. Bailey, B. Kinsella and A. Lowe, J. Electrochem. Soc.,147 (2000) 530.

    Google Scholar 

  4. C. de Waard, U. Lotz and D.E. Milliams, Corrosion 47 (1991) 976.

    Google Scholar 

  5. Z. Xia, K.C. Chou and Z. Szklarska-Smialowska, Corros. Sci. 45 (1989) 636.

    Google Scholar 

  6. R.N. Tuttle and R.D. Kane, ‘H 2S Corrosion in Oil and Gas Production: A Compilation of Classic Papers’ (NACE, Houson, TX 1981).

    Google Scholar 

  7. L. Bertolini, F. Bolzani, T. Pastore and P. Pedeferri, Br. Corr. J. 31 (1996) 218.

    Google Scholar 

  8. G. Nakayama, Y. Fukaya and M. Akashi, in ‘Electrochemical Synthesis and Modi.cation of Materials', Material Research Society Symposia (MRS) Proceedings, Vol. 451, (MRS, Pittsburg,1997), p. 567.

    Google Scholar 

  9. R.N. Parkins, C.S. O'Dell and R.R. Fessler, Corros. Sci. 24 (1984)34.

    Google Scholar 

  10. M. Odziemkowski, J. Flis and D.E. Irish, Electrochim. Acta 39 (1994) 2225.

    Google Scholar 

  11. J.K. Heuer and J.F. Stubbins, Corros. Sci. 41 (1999) 1231.

    Google Scholar 

  12. J.M. Blengino, M. Keddam, J.P. Kabbe and L. Robbiola, Corros.Sci. 37 (1995) 621.

    Google Scholar 

  13. L.J. Simpson and C.A. Melendres, J. Electrochem, Soc. 143 (1996)2146.

    Google Scholar 

  14. E.B. Castro, S.G. Real, R.H. Milocco and J.R. Vilche, Electrchim.Acta 36 (1991) 117.

    Google Scholar 

  15. L.J. Oblonsky and T.M. Devine, J. Electrochem. Soc. 144 (1997) 1252.

    Google Scholar 

  16. G. Fierro, G.M. Ingo and F. Mancia, Corrosion 45 (1989) 814.

    Google Scholar 

  17. M. Abdelmoula, Ph. Refait, S.H. Drissi, J.P. Mihe and J.M.R. Genin, Corros. Sci. 38 (1996) 623.

    Google Scholar 

  18. S.L. Hirnyi, Mater. Sci. (Russia) 37 (2001) 87.

    Google Scholar 

  19. Y.F. Cheng and J.L. Luo, J. Electrochem. Soc. 146 (1999) 970.

    Google Scholar 

  20. B.R. Linter and G.T. Burstein, Corros. Sci. 41 (1999) 117.

    Google Scholar 

  21. E.B. Castro, J.R. Vilche and A.J. Arvia, Corros. Sci. 32 (1991) 37.

    Google Scholar 

  22. J. O'M Bockris and S.U. Khan, ‘Surface Electrochemistry: A Molecular Level Approach’ (Plenum Press, New York, 1993), p. 756.

    Google Scholar 

  23. W.J. Lorenz and K.E. Heusler, Anodic Dissolution of Iron Group Metals, in F. Mans.eld (Ed.), ‘Corrosion Mechanism', (Marcel Dekker, New York, 1987), p. 1.

    Google Scholar 

  24. D.M. Drazic, The electrochemistry of iron in an active state, in J.O'M. Bockris and B.E. Conway, (Ed.), ‘Modern Aspects of Electrochemistry', Vol. 19, (Plenum Press, New York, 1989), p. 69.

    Google Scholar 

  25. M. Keddam, Anodic dissolution, in P. Marcus and J. Oudar, (Ed.), ‘Corrosion Mechanisms in Theory and Practice’, (Marcel Dekker, New York, 1995), p. 55.

    Google Scholar 

  26. K.E. Heusler, in A.J. Bard (Ed.), ‘Encyclopedia of the Electrochemistry of the Elements’ Vol. 9A, (Marcel Dekker, New York,1982), p. 230.

    Google Scholar 

  27. Ph. Refait and J.M.R. Genin, Corros. Sci. 34 (1993) 797.

    Google Scholar 

  28. S.H. Drissi, Ph. Refait, M. Abdelmoula and J.M.R. Genin, Corros.Sci. 37 (1995) 2025.

    Google Scholar 

  29. J.M.R. Genin, A.A. Olowe, Ph. Refait and L. Simon, Corros. Sci. 38 (1996) 1751.

    Google Scholar 

  30. Ph. Refait, S.H. Drissi, J. Pytkiewicz and J.M.R. Genin, Corros.Sci. 39 (1997) 1710.

    Google Scholar 

  31. Ph. Refait, M. Abdelmoula and J.M.R. Genin, Corros. Sci. 40 (1998) 1560.

    Google Scholar 

  32. J. Stewart, P.H. Balkwill and D.E. Williams, Corros. Sci. 36 (1994)1213.

    Google Scholar 

  33. G.S. Frankel, J. Electrochem Soc. 45 (1998) 2186.

    Google Scholar 

  34. Z. Szklarska-Smialowska, ‘Pitting Corrosion of Metals’ (NACE, Houston, TX, 1986), p. 204 and 347.

    Google Scholar 

  35. D. Sazou, A. Diamantopoulou and M. Pagitsas, J. Electroanal.Chem. 499 (2000) 1.

    Google Scholar 

  36. L.F. Gar.as-Mesias and J.M. Sykes, Corros. Sci. 41 (1999) 959.

    Google Scholar 

  37. T.T. Lunt, S.T. Pride, J.R. Scully, J.L. Hudson and A.S. Mikhailov, J. Electrochem. Soc. 144 (1997) 1620; B. Wu, J.R. Scully, J.L. Hudson and A.S. Mikhailov, Ibid 144 (1997) 1614.

    Google Scholar 

  38. Y. Zuo, H. Wang, J. Zhao and J. Xiong, Corros. Sci. 44 (2002) 13.

    Google Scholar 

  39. Y.F. Cheng, M. Wilmott and J.L. Lou, Br. Corr. J. 34 (1999)280.

    Google Scholar 

  40. Carmel B. Breslin, Digby D. Macdonald, Janusz Sikora and Elzbieta Sikora, Electrochim. Acta 42 (1997) 127.

    Google Scholar 

  41. P.C. Pistorius and G.T. Burstein, Corros. Sci. 36 (1994) 525; G.T. Burstein, P.C. Pistorius and S.P. Mattin, Ibid 35 (1993) 57.

    Google Scholar 

  42. G.L. Makar and D. Tromans, Corrosion 52 (1996) 250.

    Google Scholar 

  43. R.J. Chen and K. Nobe, J. Electrochem. Soc. 119 (1972) 1457.

    Google Scholar 

  44. A.J. Bard and L.R. Faulkner, ‘Electrochemical Methods: Fundamentals and Applications', (Wiley, New York, 1980), p. 218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.M. Al-Kharafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Kharafi, F., Ateya, B. & Abdallah, R. Electrochemical behaviour of low carbon steel in concentrated carbonate chloride brines. Journal of Applied Electrochemistry 32, 1363–1370 (2002). https://doi.org/10.1023/A:1022684930409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022684930409

Navigation