Skip to main content
Log in

Antioxidants in Grasshoppers: Higher Levels Defend the Midgut Tissues of a Polyphagous Species Than a Graminivorous Species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polyphagous grasshoppers consume plants that contain markedly greater amounts of potentially prooxidant allelochemicals than the grasses eaten by graminivorous grasshoppers. Therefore, levels of antioxidant defenses maintained by these herbivores might be expected to differ in accordance with host plant ranges. Antioxidant levels were compared in midgut tissues and gut fluids of a polyphagous grasshopper, Melanoplus sanguinipes, and a graminivorous grasshopper, Aulocara ellioti. Glutathione concentrations in midgut tissues of M. sanguinipes (10.6 mM) are among the highest measured in animal tissues and are twice as high as those in A. ellioti. α-Tocopherol levels are 126% higher in midgut tissues of M. sanguinipes than in those of A. ellioti, and remain at high levels when M. sanguinipes is reared on plants containing a wide range of α-tocopherol concentrations. Ascorbate levels in M. sanguinipes midgut tissues are 27% higher than in those of A. ellioti, but vary depending on the host plant on which they are reared. Midgut fluids of both species contain elevated levels of glutathione, as well as large (millimolar) amounts of undetermined antioxidants that are produced in the insects. The consumption of tannic acid decreases ascorbate concentrations in midgut tisssues and gut fluids of A. ellioti but has no effect on ascorbate levels in M. sanguinipes. The results of this study provide the first measurements of antioxidants in grasshoppers and suggest that the maintenance of high levels of antioxidants in the midgut tissues of polyphagous grasshoppers might effectively protect them from oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuja, P. M. and Albertini, R. 2001. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta 306:1–17.

    Google Scholar 

  • Aherne, S. A. and O'Brien, N. M. 2000. Mechanism of protection by the flavonoid, quercetin and rutin, against tert-butylhydroperoxide-and menadione-induced DNA single strand breaks in caco-2 cells. Free Radic. Biol. Med. 29:507–514.

    Google Scholar 

  • Ahmad, S. 1992. Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20:269–296.

    Google Scholar 

  • Aruoma, O. I., Murcia, A., Butler, J., and Halliwell, B. 1993. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J. Agric. Food Chem. 41:1880–1885.

    Google Scholar 

  • Aucoin, R. R., Fields, P., Lewis, M. A., Philogène, B. J. R., and Arnason, J. T. 1990. The protective effect of antioxidants to a phototoxin-sensitive herbivore, Manduca sexta. J. Chem. Ecol. 16:2913–2924.

    Google Scholar 

  • Aucoin, R., Guillet, G., Murray, C., Philogène, B. J. R., and Arnason, J. T. 1995. How do insect herbivores cope with the extreme oxidative stress of phototoxic host plants?. Arch. Insect Biochem. Physiol. 29:211–226.

    Google Scholar 

  • Babbs, C. F. 1992. Oxygen radicals in ulcerative colitis. Free Radic. Biol. Med. 13:169–181.

    Google Scholar 

  • Baker, M. A., Cerniglia, G. J. and Zaman, A. 1990. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 190:360–365.

    Google Scholar 

  • Barbehenn, R. V. 2002. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. J. Chem. Ecol. 28:1325–1343.

    Google Scholar 

  • Barbehenn, R. V., Martin, M. M., and Hagerman, A. E. 1996. Reassessment of the roles of the peritrophic envelope and hydrolysis in protecting polyphagous grasshoppers from ingested hydrolyzable tannins. J. Chem. Ecol. 22:1901–1919.

    Google Scholar 

  • Barbehenn, R. V., Bumgarner, S. L., Roosen, E. F., and Martin, M. M. 2001. Antioxidant defenses in caterpillars:role of the ascorbate-recycling system in the midgut lumen. J. Insect Physiol. 47:349–357 (erratum:47:1095).

    Google Scholar 

  • Bernays, E. A. 1978. Tannins:An alternative viewpoint. Entomol. Exp. Appl. 24:244–253.

    Google Scholar 

  • Bernays, E. A. and Chamberlain, D. J. 1980. A study of tolerance of ingested tannin in Schistocerca gregaria. J. Insect Physiol. 26:415–420.

    Google Scholar 

  • Bernays, E. A. and Barbehenn, R. V. 1987. Nutritional ecology of grass foliage-chewing insects, pp. 147–175, in F. Slansky, Jr., and J. G. Rodriguez, (Eds.). Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, New York.

    Google Scholar 

  • Bernays, E. A. and Bright, K. L. 1993. Mechanisms of dietary mixing in grasshoppers: A review. Comp. Biochem. Physiol. 104A:125–131.

    Google Scholar 

  • Bernays, E. A., Chamberlain, D., and McCarthy, P. 1980. The differential effects of ingested tannic acid on different species of Acridoidea. Entomol. Exp. Appl. 28:158–166.

    Google Scholar 

  • Bi, J. L. and Felton, G. W. 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 21:1511–1530.

    Google Scholar 

  • Bi, J. L. and Felton, G. W. 1997. Antinutritive and oxidative components as mechanisms of induced resistance in cotton. J. Chem. Ecol. 23:97–117.

    Google Scholar 

  • Brehe, J. E. and Burch, H. B. 1976. Enzymatic assay for glutathione. Anal. Biochem. 74:189–197.

    Google Scholar 

  • Buffinton, G. D. and Doe, W. F. 1995. Altered ascorbic acid status in the mucosa from inflammatory bowel disease patients. Free Radic. Res. 22:131–143.

    Google Scholar 

  • Canada, A. T., Giannella, E., Nguyen, T. D., and Mason, R. P. 1990. The production of reactive oxygen species by dietary flavonols. Free Radic. Biol. Med. 9:441–449.

    Google Scholar 

  • Cao, G., Sofie, E. and Prior, R. L. 1997. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 22:749–760.

    Google Scholar 

  • Carroll, M., Hanlon, A., Hanlon, T., Zangerl, A. R., and Berenbaum, M. R. 1997. Behavioral effects of carotenoid sequestration by the parsnip webworm, Depressaria pastinacella. J. Chem. Ecol. 23:2707–2719.

    Google Scholar 

  • Chandra, J., Samali, A., and Orrenius, S. 2000. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29:323–333.

    Google Scholar 

  • Dadd, R. H. 1973. Insect nutrition: current developments and metabolic implications. Annu. Rev. Entomol. 18:381–420.

    Google Scholar 

  • Das, D., Bandyopadhyay, D., Bhattacharjee, M., and Banerjee, R. K. 1997. Hydroxyl radical is the major causative factor in stress-induced gastric ulceration. Free Radic. Biol. Med. 23:8–18.

    Google Scholar 

  • Dunford, R., Land, E. J., Rozanowska, M., Sarna, T., and Truscott, T. G. 1995. Interaction of melanin with carbon-and oxygen-centered radicals from methanol and ethanol. Free Radic. Biol. Med. 19:735–740.

    Google Scholar 

  • Evans, W. A. L. and Payne, D. W. 1964. Carbohydrases of the alimentary tract of the desert locust, Schistocerca gregaria Forsk. J. Insect Physiol. 10:657–674.

    Google Scholar 

  • Felton, G. W. and Summers, C. B. 1995. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29:187–197.

    Google Scholar 

  • Ferreira, C., Oliveira, M. C., and Terra, W. R. 1990. Compartmentalization of the digestive process in Abracris flavolineatea (Orthoptera: Acrididae) adults. Insect Biochem. 20:267–274.

    Google Scholar 

  • Fogarty, R. V. and Tobin, J. M. 1996. Fungal melanins and their interactions with metals. Enzyme Microb. Tech. 19:311–317.

    Google Scholar 

  • Gangwere, S. K., Evans, F. C., and Nelson, M. L. 1976. The food-habits and biology of Acrididae in an old-field community in southeastern Michigan. Great Lakes Entomol. 9:83–123.

    Google Scholar 

  • Gant, T. W., Ramakrishna, R., Mason, R. P., and Cohen, G. M. 1988. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem.-Biol. Interac. 65:157–173.

    Google Scholar 

  • Gardner, A. M., Xu, F-H., Fady, C., Jacoby, F. J., Duffey, D. C., Tu, Y., and Lichtenstein, A. 1997. Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radic. Biol. Med. 22:73–83.

    Google Scholar 

  • Glascott, P. A. and Farber, J. L. 1999. Assessment of physiological interaction between vitamin C and vitamin E. Meth. Enzymolods. 300:78–89.

    Google Scholar 

  • Green, E. S. and Berenbaum, M. R. 1994. Phototoxicity of citral to Trichoplusia ni (Lepidoptera: Noctuidae) and its amelioration by vitamin A. Photochem. Photobiol. 60:459–462.

    Google Scholar 

  • Griffith, O. W. 1983. Glutathione and glutathione disulfide, pp. 521–529, in J. Bergmeyer and M. Grassl (Eds.). Methods of Enzymatic Analysis 3rd Ed. VCH Publishers, Deerfield Beach, Florida.

    Google Scholar 

  • Griffith, O. W. 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 27:922–935.

    Google Scholar 

  • Guo, Q., Zhao, B., Li, M., Shen, S., and Xin, W. 1996. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta 1304:210–222.

    Google Scholar 

  • Hagen, T. M., Wierzbicka, G. T., Bowman, B. B., Aw, T. Y., and Jones, D. P. 1990. Fate of dietary glutathione: disposition in the gastrointestinal tract. Am. J. Physiol. 259:G530–G535.

    Google Scholar 

  • Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N, Ritchard, N. T., Hartzfeld, P. W., and Riechel, T. L. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46:1887–1892.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J. M. C. 1999. Free Radicals in Biology and Medicine. Oxford University Press, Oxford.

    Google Scholar 

  • Hodnick, W. F., Kalyanaraman, B., Pritsos, C. A., and Pardini, R. S. 1989. The production of hydroxyl and semiquinone free radicals during the autoxidation of redox active flavonoids, pp. 149–152 in M. G. Simic, K. A. Taylor J. W. Ward and C. von Sonntag (Eds.), Oxygen Radicals in Biology and Medicine, Plenum Press, New York.

    Google Scholar 

  • Joern, A. 1983. Host plant utilization by grasshoppers (Orthoptera: acrididae) from a sandhills prairie. J. Range Manage. 36:793–797.

    Google Scholar 

  • Johnson, K. S. and Felton, G. W. 2001. Plant phenolics as dietary antioxidants for herbivorous insects: a test with genetically modified tobacco. J. Chem. Ecol. 27:2579–2597.

    Google Scholar 

  • Jones, E. and Hughes, R. E. 1983. Foliar asacorbic acid in some angiosperms. Phytochemistry 22:2493–2499.

    Google Scholar 

  • Kitagawa, S., Fujisawa, H., and Sakurai, H. 1992. Scavenging effects of dihydric and polyhydric phenols on superoxide anion radicals, studied by electron spin resonance spectrometry. Chem. Pharm. Bull. 40:304–307.

    Google Scholar 

  • Kramer, K. and Seib, P. A. 1982. Ascorbic acid and the growth and development of insects, pp. 275–201, in P. A. Seib and B. M. Tolbert (Eds.). Ascorbic Acid: Chemistry, Metabolism and Uses. American Chemical Society, Washington. D.C.

    Google Scholar 

  • Lauteburg, B. H., Bilzer, M. E., and Inauen, R. W. 1988. Decreased glutathione in inflamed colonic mucosa in man. Possible role of hypochlorous acid and prevention by 5–aminosalicylic acid, pp. 273–277, in R. P. MacDermott (ed.). Inflammatory Bowel Disease: Current Status and Future Approach. Elsevier Amsterdam.

    Google Scholar 

  • Lee, K. and Berenbaum, M. R. 1990. Defense of parsnip webworm against phototoxic furanocoumarins: role of antioxidant enzymes. J. Chem. Ecol. 16:2451–2460.

    Google Scholar 

  • Levine, M., Wang, Y., and Rumsey, S. 1999. Analysis of ascorbic acid and dehydroascorbic acid in biological systems. Methods. Enzymol. 299:65–76.

    Google Scholar 

  • Lindroth, R. L. 1991. Differential toxicity of plant allelochemicals to insects: roles of enzymatic detoxication systems, pp. 1–34, in E. A. Bernays (ed.). Insect–Plant Interactions, Vol. 3. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Lindroth, R. L. and PetersonS. S. 1988. Effects of plant phenols on performance of southern armyworm larvae. Oecologia 75:185–189.

    Google Scholar 

  • Luwe, M. 1996. Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant Cell Environ 19:321–328.

    Google Scholar 

  • Lykkesfeldt, J. and Ames, B. N. 1999. Ascorbic acid recycling in rat hepatocytes as measurement of antioxidant capacity: decline with age. Methods. Enzymol. 299:83–88.

    Google Scholar 

  • Lykkesfeldt, J., Loft, S., and Poulsen, H. E. 1995. Determination of ascorbic acid and dehydroascorbic acid in plasma by high-performance liquid chromatography with coulometric detection—are they reliable biomarkers of oxidative stress?. Anal. Biochem. 229:329–335.

    Google Scholar 

  • Ma, L. and Dolphin, D. 1999. The metabolites of dietary chlorophylls. Phytochemistry 50:195–202.

    Google Scholar 

  • Madesh, M., Benard, O., and Balasubramanian, K. A. 1999. Apoptotic process in the monkey small intestinal epithelium: 2. Possible role of oxidative stress. Free Radic. Biol. Med. 26:431–438.

    Google Scholar 

  • Mallet, J. F., Cerrati, C., Ucciani, E., Gamisans, J., and Gruber, M. 1994. Antioxidant activity of plant leaves in relation to their alpha-tocopherol content. Food Chem. 49:61–65.

    Google Scholar 

  • Mead, L. J., Khachatourians, G. G., and Jones, G. A. 1988. Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Appl. Environ. Microbiol. 54:1174–1181.

    Google Scholar 

  • Meister, A. 1992. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44:1905–1915.

    Google Scholar 

  • Metadiewa, D., Jaiswal, A. K., Cenas, N., Dickancaite, E., and Segura-Auilar, J. 1999. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic. Biol. Med. 26:107–116.

    Google Scholar 

  • Nose, M., Koide, T., Morikawa, K., Inoue, M., and Ogihara, Y. 1998. Formation of reactive oxygen intermediates might be involved in the trypanocidal activity of gallic acid. Biol. Pharm. Bull. 21:583–587.

    Google Scholar 

  • Packer, J. E., Slater, T. F., and Willson, R. L. 1979. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278:737–738.

    Google Scholar 

  • Pardini, R. S. 1995. Toxicity of oxygen from naturally occurring redox-active pro-oxidants. Arch. Insect Biochem. Physiol. 29:101–118.

    Google Scholar 

  • Peric-Mataruga, V., Blagojevic, D., Spasic, M. B., Ivanovic, J., and Jankovic-Hladni, M. 1997. Effect of the host plant on the antioxidative defence in the midgut of Lymantria dispar L. caterpillars of different population origins. J. Insect Physiol. 43:101–106.

    Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231–1237.

    Google Scholar 

  • Reed, D. J., Babson, J. R., Beatty, P. W., Brodie, A. E., Ellis, W. W., and Potter, D. W. 1980. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal. Biochem. 106:55–62.

    Google Scholar 

  • Roberts, J. C. and Francetic, D. J. 1993. The importance of sample preparation and storage in glutathione analysis. Anal. Biochem. 211:183–187.

    Google Scholar 

  • Rosenthal, G. A. and Berenbaum, M. R. 1991. Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, San Diego.

    Google Scholar 

  • Sakagami, H., Satoh, K., Hatano, T., Yoshida, T., and Okuda, T. 1997. Possible role of radical intensity and oxidation potential for gallic acid-induced apoptosis. Anticancer Res. 17:377–380.

    Google Scholar 

  • Salah, N., Miller, N. J., Paganga, G., Tijburg, L., Bolwell, G. P., and Rice-Evans, C. 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322:339–346.

    Google Scholar 

  • Sarna, T., Hyde, J. S., and Swartz, H. M. 1976. Ion-exchange in melanin: an electron spin resonance study with lanthanide probes. Science 192:1132–1134.

    Google Scholar 

  • SAS. 2000. The SAS System for Windows. Version 8e. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Schwanz, P., Picon, C., Vivin, P., Dreyer, E., Guehl, J. M., and Polle, A. 1996a. Responses of antioxidative systems to drought stress in pedunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol. 110:393–402.

    Google Scholar 

  • Schwanz, P., Kimball, B. A., Idso, S. B., Hendrix, D. L., and Polle, A. 1996b. Antioxidants in sun and shade leaves of sour orange trees (Citrus aurantium) after long-term acclimation to elevated CO2. J. Exp. Bot. 47:1941–1950.

    Google Scholar 

  • Steinly, B. A. and Berenbaum, M. 1985. Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papilio glaucus. Entomol. Exp. Appl. 39:3–9.

    Google Scholar 

  • Summers, C. B. and Felton, G. W. 1993. Antioxidant role of dehydroascorbic acid reductase in insects. Biochim. Biophys. Acta 1156:235–238.

    Google Scholar 

  • Summers, C. B. and Felton, G. W. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuiidae): Potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem. Mol. Biol. 24:943–953.

    Google Scholar 

  • Thiboldeaux, R. L., Lindroth, R. L., and Tracy, J. W. 1998. Effects of juglone (5–hydroxy-1,4–naphthoquinone) on midgut morphology and glutathione status in Saturniid moth larvae. Comp. Biochem. Physiol. 120:481–487.

    Google Scholar 

  • Thomas, C. E., Mclean, L. R., Parker, R. A., and Ohlweiler, D. F. 1992. Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550.

    Google Scholar 

  • Timmerman, S. E., Zangerl, A. R., and Berenbaum, M. R. 1999. Ascorbic and uric acid responses to xanthotoxin ingestion in a generalist and a specialist caterpillar. Arch. Insect Biochem. Physiol. 42:26–36.

    Google Scholar 

  • van Ginkel, G. and Sevanian, A. 1994. Lipid peroxidation-induced membrane structural alterations. Methods. Enzymol. 233:273–279.

    Google Scholar 

  • Vanderzant, E. S., Pool, M. C., and Richardson, C. D. 1962. The role of ascorbic acid in the nutrition of three cotton insects. J. Insect Physiol. 8:287–297.

    Google Scholar 

  • Vethanayagam, J. G. G., Green, E. H., Rose, R. C., and Bode, A. M. 1999. Glutathione-dependent ascorbate recycling activity of rat serum albumin. Free Radic. Biol. Med. 26:1591–1598.

    Google Scholar 

  • Winkler, B. S., Orselli, S. M., and Rex, T. S. 1994. The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic. Biol. Med. 17:333–349.

    Google Scholar 

  • Zheng, J., Cho, M., Jones, A. D., and Hammock, B. D. 1997. Evidence of quinone metabolites of naphthalene covalently bound to sulfur nucleophiles of proteins of murine clara cells after exposure to napthalene. Chem. Res. Toxicol. 10:1008–1014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond V. Barbehenn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbehenn, R.V. Antioxidants in Grasshoppers: Higher Levels Defend the Midgut Tissues of a Polyphagous Species Than a Graminivorous Species. J Chem Ecol 29, 683–702 (2003). https://doi.org/10.1023/A:1022824820855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022824820855

Navigation