Skip to main content
Log in

Nanoparticle Formation by Laser Ablation

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The properties of nanoparticle aerosols of size ranging from 4.9 nm to 13 nm, generated by laser ablation of solid surfaces are described. The experimental system consisted of a pulsed excimer laser, which irradiated a rotating target mounted in a cylindrical chamber 4 cm in diameter and 18-cm long. Aerosols of oxides of aluminum, titanium, iron, niobium, tungsten and silicon were generated in an oxygen carrier gas as a result of a reactive laser ablation process. Gold and carbon aerosols were generated in nitrogen by non-reactive laser ablation. The aerosols were produced in the form of aggregates of primary particles in the nanometer size range. The aggregates were characterized using a differential mobility analyzer and electron microscopy. Aggregate mass and number concentration, electrical mobility size distribution, primary particle size distribution and fractal dimension were measured. System operating parameters including laser power (100 mJ/pulse) and frequency (2 Hz), and carrier gas flow rate (1 l/min) were held constant.

A striking result was the similarity in the properties of the aerosols. Primary particle size ranged between 4.9 and 13 nm for the eight substances studied. The previous studies with flame reactors produced a wider spread in primary particle size, but the order of increasing primary particle size follows the same trend. While the solid-state diffusion coefficient probably influences the size of the aerosol in flame reactors, its effect is reduced for aerosols generated by laser ablation. It is hypothesized that the reduced effect can be explained by the collision-coalescence mechanism and the very fast quenching of the laser generated aerosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boulaud D., 1993. In: Marijnissen J.C.M. and Pratsinis S. eds. Synthesis and Measurment of Ultrafine Particles. Delft University Press, Delft, the Netherlands.

    Google Scholar 

  • Deng S. & S.C. Wang, 1998. In: Proceedings of SPIE-the International Society of Optical Engineering, 3550: 16-19 September. Bellingham, Washington.

  • Dockery D.W., C.A. Pope, X.P. Xu, J.D. Spengler, J.H. Ware, M.E. Fay, B.G. Ferris & F.E. Speizer, 1993. New England J. Med. 329: 24 1753-1759.

    Google Scholar 

  • Fahrenholtz W.G., J.R. Foltyn, K.C. Ott, M. Chadwick & D.M. Smith, 1990. In: Atwater H.A., Houle F.A. and Lowndes D.H. eds. Surface Chemistry and Beam-Solid Interactions, Proc. Mat. Res. Soc. Symp., Boston, MA. Materials Research Society, Pittsburgh, PA.

    Google Scholar 

  • Ferin J., G. Oberdorster, S.C. Sonderholm, R. Sonderholm & R.J. Gelein, 1991. J. Aerosol Med. 1: 4.

    Google Scholar 

  • Friedlander S.K., 2000. Smoke Dust and Haze, Fundamentals of Aerosol Dynamics. Oxford University Press.

  • Friedlander S.K., K. Ogawa & M. Ullmann, 2000. J. Polymer Sci. 38: 2658-2665.

    Google Scholar 

  • Fuchs N.A., 1964. The Mechanics of Aerosols. Dover.

  • Gartner G., P. Janiel, H. Lydtin & L. Rehder, 1993. In: Marijnissen J.C.M. and Pratsinis S. eds. Synthesis and Measurment of Ultrafine Particles. Delft University Press, Delft, the Netherlands.

    Google Scholar 

  • Goldstein A.N. C.M. Escher & A.P. Alivisastos, 1992. Science 256: 1425.

    Google Scholar 

  • Gray D.E., 1972. American Institute of Physics Handbook, McGraw-Hill Book Company.

  • Johnston G.P., R. Muenchhausen, D.M. Smith & W.G. Fahrenholtz, 1992. J. Am. Ceram. Soc. 75: 3293.

    Google Scholar 

  • Karch J., R. Birringer & H. Gleiter, 1987. Nature 330: 556.

    Google Scholar 

  • Karch J. & R. Birringer, 1990. Ceram. Intel. 16: 291.

    Google Scholar 

  • Kato M., 1974. Jpn. J. Appl. Phys. Part 1 15: 757.

    Google Scholar 

  • Kleinwechter H., 1996. Diploma Thesis, Gerhard-Mercator-Universitat-Duisburg, Germany.

  • Kresse M., S. Wagner, D. Pfefferer & R. Lawaczeck, 1998. Magnetic Resonance in Medicine 40(2): 236-242.

    Google Scholar 

  • Luk'yanchuk B.S., W. Marine & S.I. Anisimov, 1998. Lasers and Phys. Thin Films 8(1): 291.

    Google Scholar 

  • Medalia A.I. & G. Kraus, 1994. Science and Technology of Rubber, 2nd edn. Academic Press.

  • Mark J.E., 1993. In: Mark J.E., Eisenberg A., Graessly W.W., Manderkern L., Samulski E.T., Koenig J.L. and Wignall G.D. eds. Physical Properties of Polymers, 2nd edn. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Nishide T., M. Sato & H. Hara, 2000. J. Mat. Sci. 35(2): 465-469.

    Google Scholar 

  • Ogawa K., T. Vogt, M. Ullmann, S. Johnson & S.K. Friedlander, 2000. J. Appl. Phys. 87(1): 63-73.

    Google Scholar 

  • Ogawa K., 1999. MS Thesis. University of California, Los Angeles.

  • Ready J.F., 1971. Effects of High-Power Laser Radiation. Academic Press.

  • Remillard J.T., J.R. McBride, K.E. Nietering & A.R. Drews, 2000. J. Phys. Chem. 104(18): 4440-4447.

    Google Scholar 

  • Saadoun L., J.A. Ayllon, J. Jimenez-Becerril & J. Peral, 2000. Mat. Res. Bull. 35(2): 193-202.

    Google Scholar 

  • Sasaki T., S. Teraguchi, N. Koshizaki & H. Umehara, 1998. Appl. Surf. Sci. 127-129: 398.

    Google Scholar 

  • Schaefer D.W., 1988. MRS bull. 13(2): 2.

    Google Scholar 

  • Siegel R.W., 1990. In: Fujita F.E. ed. Physics of New Materials, Springer Series in Material Science. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Subramania G., K. Constant, R. Biswas & M.M. Sigalas, 1999. J. Lightwave Tech. 17(11): 1970-1974.

    Google Scholar 

  • TSI Manual for Condensation Particle Counter Model 3010, Minneapolis, Minnesota, 1992.

  • Vogt T., 1999. Dipoma Thesis, Universitaet Karsruhe, Germany.

  • Wang Y., L. Phillips, C. Yelleswarapu & T. George, 1999. Optics Comm. 163(46): 185-188.

    Google Scholar 

  • Weber A.P., J.D. Thorne & S.K. Friedlander, 1995. Mat. Res. Soc. Symp. Proc. 380: 87-92.

    Google Scholar 

  • Weast R.C. & D.R. Lide, 1989. Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Windeler R.S., S.K. Friedlander & K.E.J. Lehtinen, 1997. Aerosol Sci. Technol. 27: 174.

    Google Scholar 

  • Windeler R.S., K.E.J. Lehtinen & S.K. Friedlander, 1997b. Aerosol Sci. Technol. 27: 191.

    Google Scholar 

  • Xiong C., 1999. MS Thesis. Department of Chemical Engineering UCLA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmidt-Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullmann, M., Friedlander, S.K. & Schmidt-Ott, A. Nanoparticle Formation by Laser Ablation. Journal of Nanoparticle Research 4, 499–509 (2002). https://doi.org/10.1023/A:1022840924336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022840924336

Navigation