Skip to main content
Log in

Replica Bounds for Optimization Problems and Diluted Spin Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we generalize to the case of diluted spin models and random combinatorial optimization problems a technique recently introduced by Guerra (cond-mat/0205123) to prove that the replica method generates variational bounds for disordered systems. We analyze a family of models that includes the Viana–Bray model, the diluted p-spin model or random XOR-SAT problem, and the random K-SAT problem, showing that the replica/cavity method, at the various levels of approximation, provides systematic schemes to obtain lower bounds of the free-energy at all temperatures and of the ground state energy. In the case of K-SAT and XOR-SAT it thus gives upper bounds of the satisfiability threshold. Our analysis underlines deep connections with the cavity method which are not evident in the long range case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. F. Edwards and P. W. Anderson, J. Phys. F: Metal Phys. 5:965-974 (1975).

    Google Scholar 

  2. M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, 1987).

  3. O. C. Martin, R. Monasson, and R. Zecchina, Theoret. Comput. Sci. 265:3(2001).

    Google Scholar 

  4. H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford, 2001).

  5. For a review on the work of mathematicians on spin glass systems see: A. Bovier and P. Picco (eds.) Mathematical Aspects of Spin Glasses and Neural Networks, Progress in Probability, Vol. 41 (Birkhauser, Boston, 1997). M. Talagrand, Proceedings of the Berlin international Congress of Mathematicians. Doc. Math., Extra Volume I, (1998) 1 and references therein. We refer to the web page of M. Talagrand for the comprehensive list of references on his work: http://www.math.ohio-state.edu/ talagran/

  6. M. Talagrand, Probab. Theory and Relat. Fields 117:303(2000), and M. TalagrandOn the p-Spin Interaction Model at Low Temperature (C. R. A. S., to appear).

    Google Scholar 

  7. A. Bovier and I. Kurkova, Rigorous Results on Some Simple Spin Glass Models, cond-mat/0206562 and references therein.

  8. F. Guerra and F. L. Toninelli, Commun. Math. Phys. 230:1, 71 (2002).

    Google Scholar 

  9. F. Guerra, Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model, cond-mat/0205123.

  10. M. Mezard and G. Parisi, Eur. Phys. J. B 20:217(2001).

    Google Scholar 

  11. J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding Belief Propagation and its Generalizations, 2001. MERL technical report TR 2001-22, available at http://www.merl.com/papers/TR2001-22; J. S. Yedidia, W. T. Freeman, and Y. Weiss, in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, eds. (MIT Press, Cambridge, MA, 2001).

    Google Scholar 

  12. M. Mezard, G. Parisi, and R. Zecchina, Science 297:812-815 (2002); M. Mezard and R. Zecchina, cond-mat/0207194; to appear in Phys. Rev. E.

    Google Scholar 

  13. S. Franz, M. Leone, F. R. Tersenghi, and R. Zecchina, Phys. Rev. Lett. 87:127209(2001).

    Google Scholar 

  14. R. Monasson and R. Zecchina, Phys. Rev. E 56:1357(1997).

    Google Scholar 

  15. F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Phys. Rev. E 63:026702 (2001).

    Google Scholar 

  16. C. Creignou and H. Daude, Discr. Appl. Math. 96-97:41(1999).

    Google Scholar 

  17. C. Berge, Graphs and Hyper-graphs (North-Holland, 1973).

  18. M. Talagrand, Probab. Theory and Relat. Fields 119:187(2001).

    Google Scholar 

  19. K. Nakanishi, Phys. Rev. B 23:3514(1981).

    Google Scholar 

  20. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference (Morgan Kaufmann, San Francisco, 1988).

    Google Scholar 

  21. R. G. Gallager, Low Density Parity-Check Codes (MIT Press, Cambridge, MA, 1963).

    Google Scholar 

  22. M. Mezard and G. Parisi, The Cavity Method at Zero Temperature, cond-mat/0207121.

  23. C. Dedominicis and P. Mottishaw, J. Phys. A: Math. Gen. 20:L1267(1987); R. Monasson, J. Phys. A: Math. Gen. 31:513 (1998).

    Google Scholar 

  24. M. Leone, Ph.D. thesis, available in ps format at the URL: http://www.sissa.it/sbp/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, S., Leone, M. Replica Bounds for Optimization Problems and Diluted Spin Systems. Journal of Statistical Physics 111, 535–564 (2003). https://doi.org/10.1023/A:1022885828956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022885828956

Keywords

Navigation