Skip to main content
Log in

Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Powders of hydroxyapatite (HA), partially fluoride-substituted hydroxyapatite (fHA), and fluorapatite (FA) were synthesized in house using optimum methods to achieve relatively pure powders. These powders were assessed by the commonly used bulk techniques of X-ray diffraction (XRD), Fourier transform infra-red (FTIR) and FT-Raman spectroscopies, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and F-selective electrode. In addition, the current study has employed transmission electron microscopy (TEM), involving morphological observation, electron diffraction and energy-dispersive X-ray spectrometry (EDX), as an effective analytical technique to evaluate the powders at a microscopic level. The HA and fHA particles were elongated platelets about 20×60 nm in size, while FA particles were over twice this size. Calcination of the HA and fHA powders at 1000 °C for 1 h resulted in increased grain size and crystallinity. The calcined fHA material appeared to possess a crystal structure intermediate between HA and FA, as evidenced by the (3 0 0) peak shift in XRD, as well as by the position of the hydroxyl bands in the FTIR spectra. This result was consistent with electron diffraction of individual particles. Small levels of impurities in some of the powders were identified by EDX and electron diffraction, and the carbonate content was detected by FTIR. The use of TEM in conjunction with the bulk techniques has allowed a more thorough assessment of the apatites, and has enabled the constituents in these closely related apatite powders to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Legeros and J. P. Legeros, in An Introduction to Bioceramics, edited by L. L. Hench and J. Wilson (World Scientific, Singapore, 1993).

    Google Scholar 

  2. M. Okazaki, Y. Miake, H. Tohda, T. Yanagisawa, T. Matsumoto and J. Takahashi, Biomater. 20 (1999) 1421.

    Google Scholar 

  3. J. C. Elliott, in Studies in Inorganic Chemistry, Vol. 18 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  4. G. Penel, G. Leory, C. Rey, B. Sombret, J. P. Huvenne and E. Bres, J. Mater. Sci. Mater. Med. 8 (1997) 271.

    Google Scholar 

  5. C. B. Baddiel and E. E. Berry, Spectrochemica Acta 22 (1966) 1407.

    Google Scholar 

  6. Y. Liu, P. Comodi and P. Sassi, N. Jb. Miner. Abh. 174 (1998) 211.

    Google Scholar 

  7. F. Freund and R. M. Knobel, J. Chem. Soc., Dalton Trans. (1977) 1136.

  8. A. Baumer, M. Ganteaume and W. E. Klee, Bull. Mineral. 108 (1985) 145.

    Google Scholar 

  9. M. Braun, P. Hartmann and C. Jana, J. Mater. Sci. Mater. Med. 6 (1995) 150.

    Google Scholar 

  10. L. J. Jha, S. M. Best, J. C. Knowles, I. Rehman, J. D. Santos and W. Bonfield, ibid. 8 (1997) 185.

    Google Scholar 

  11. M. Wei, A. J. Ruys, B. K. Milthorpe and C. C. Sorrell, J. Biomed. Mater. Res. 45 (1999) 11.

    Google Scholar 

  12. H.-J. Kleebe, E. F. Bres, D. Bernache-Assolant and G. Ziegler, J. Am. Ceram. Soc. 80 (1997) 37.

    Google Scholar 

  13. H. Ji and P. M. Marquis, J. Mater. Sci. Letters 10 (1991) 132.

    Google Scholar 

  14. E. I. Suvorova, F. Christensson, H. E. Lundager Madsen and A. A. Chernov, J. Cryst. Growth 186 (1998) 262.

    Google Scholar 

  15. E. I. Suvorova and P. A. Buffat, J. Microsc. 196 (1999) 46.

    Google Scholar 

  16. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Boick, J. F. Kay and R. H. Doremus, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  17. M. Hirano, H. Takeuchi and M. Ono, in Sintering'87 Volume 2, Proc. of the International Institute for the Science of Sintering Symposium, edited by S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe (Elsevier, Amsterdam, Holland, 1987).

    Google Scholar 

  18. T. Futagami and T. Okamoto, J. Ceram. Soc. Jap. 95 (1987) 775.

    Google Scholar 

  19. E. D. Eanes and A. W. Hailer, Calcif. Tissue Int. 63 (1998) 250.

    Google Scholar 

  20. M. Okazaki, H. Tohda, T. Yanagisawa, M. Taira and J. Takahashi, Biomater. 19 (1998) 919.

    Google Scholar 

  21. A. Traveria-Cros, M. Cuevas-Diarte, F. Plana-Lievat and M. Font-Altaba, Acta Geol. Hisp. 15 (1980) 15.

    Google Scholar 

  22. R. Fabian, I. Kotsis, P. Zimany and P. Halmos, Talanta 46 (1998) 1273.

    Google Scholar 

  23. E. J. Duff and J. L. Stuart, Anal. Chem. Acta. 52 (1970) 155.

    Google Scholar 

  24. J. L. Labar, in Proc. of EUREM 12, Volume III, edited by L. Frank and F. Ciampor (Brno, Hungary, 2000).

  25. J. D. B. Featherstone, S. Pearson and R. Z. Legeros, Caries Res. 18 (1984) 63.

    Google Scholar 

  26. L. Grondahl, L. Rintoul, M. Wei, E. Wentrup-Byrne and J. H. Evans. Work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, M., Evans, J.H., Bostrom, T. et al. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. Journal of Materials Science: Materials in Medicine 14, 311–320 (2003). https://doi.org/10.1023/A:1022975730730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022975730730

Keywords

Navigation