Skip to main content
Log in

Gene flow assessment in transgenic plants

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

In most of the important crops in the world, gene flow between cultivars and between wild and weedy relatives has always taken place. Factors influencing this gene flow, such as the mating system, mode of pollination, mode of seed dispersal and the particular characteristics of the habitat where the crops grow, are difficult to evaluate and in consequence, the quantification of gene flow is not easy. Transgene flow from engineered crops to other cultivars or to their wild and weedy relatives is one of the major concerns in relation to the ecological risks associated with the commercial release of transgenic plants. With transgenic crops it is important to quantify this gene flow and to try to establish strategies to control or minimise it, taking into account the possible ecological effect of the newly introduced genes, whether advantageous or disadvantageous. The use of transgenic plants has proven to be an effective tool to quantify the gene flow to other cultivars of the same species or to wild and weedy relatives in all crops analysed. Here we review the major studies in this area, and conclude that the potential risk of gene flow has to be assessed case by case and caution is necessary when making general conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson E (1961) The analysis of variation in cultivated plants with special reference to introgession. Euphytica 10: 79-86

    Google Scholar 

  • Arriola PE & Ellstrand NC (1997) Fitness of interspecific hybrids in the genus Sorghum: persistence of crop genes in wild populations. Ecol. Appl. 7: 512-518

    Google Scholar 

  • Baranger A (1995) Evaluation en conditions naturelles des risques de flux d'un transgène d'un colza (Brassica napus L.) résistant à un herbicide à une espècie adventice (Raphanus raphanistrum L.). Thèse de Doctorat de l'Université Paris-Sud

  • Baranger A, Chevre AM, Eber F & Renard M (1995) Effect of an oilseed rape genotype on the spontaneous hybridization rate with a weedy species: an assessment of transgene dispersal. Theor. Appl. Genet. 91: 956-963

    Google Scholar 

  • Benz BF (2001) Archaelogical evidence of teosinte domestication from Guila Naquitz, Oaxaca. Proc. Natl. Acad. Sci. 98: 2104-2106

    Google Scholar 

  • Bock AD, Lheureux K, Libeau-Dulos M, Nilsagard H & Rodriguez-Cerezo E (2002) Scenarios for co-existence of genetically modified, conventional and organic crops in European Agriculture. European Commission. Joint Research Centre. Report EUR 20394EN

  • Brown J & Brown AP (1996) Gene transfer between canola (Brassica napus L. and B. campestris L.) and related weed species. Ann. Appl. Biol. 129: 513-522

    Google Scholar 

  • Brubaker CL, Brown AHD, Stewart JMcD, Kilby MJ & Grace JP (1999) Production of fertile hybrid germplasm with diploid Australian Gossypium species for cotton improvement. Euphytica 108: 199-213

    Google Scholar 

  • Castillo-Gonzalez F & Goodman MM (1995) Research on gene flow between improved maize and landraces. In: Serratos JA, Willcox MC & Castillo-Gonzalez F (eds) Proceedings of the Forum: Gene Flow Among Maize Landraces, Improved Maize Varieties and Teosinte: Implications for Transgenic Maize (pp. 67-72)

  • Chèvre AM, Eber F, Baranger A & Renard M (1997) Gene flow from transgenic crops. Nature 389: 924

    Google Scholar 

  • Chèvre AM, Eber F, Baranger A, Hureau G, Barret P, Picault H & Renard M (1998) Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Theor. Appl. Genet. 97: 90-98

    Google Scholar 

  • Chevre AM, Eber F, Darmency H, Fleury A, Picault H, Letanneur JC & Renard M (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theor. Appl. Genet. 100: 1233-1239

    Google Scholar 

  • Christou P (2002) No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexico. Transgenic Res. 11: 3-5

    Google Scholar 

  • CIMMYT (International Maize and Wheat Improvement Center) (2001) Further tests at CIMMYT find no presence of promoter associated with transgenes in Mexican landraces in gene bank or from recent field collections. Press Release, 14 December 2001

  • Colbach N, Clermon-Dauphin C & Meynard JM (2001a) GEN-ESYS: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers I. Temporal evolution of a population of rapeseed volunteers in a field. Agric. Ecosyst. Environ. 83: 235-253

    Google Scholar 

  • Colbach N, Clermon-Dauphin C & Meynard JM (2001b) GEN-ESYS: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers II. Genetic exchanges among volunteer and cropped populations in a small region. Agric. Ecosyst. Environ. 83: 255-270

    Google Scholar 

  • Conner AJ (1993) Monitoring 'escapes' from field trials of transgenic potatoes: a basis for assessing environmental risks. In: Seminar Sci Approaches Assessment Res Trials Genet Modified Plants (pp. 34-40). Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Conner AJ (1994) Analysis of containment and food safety issues associated with the release of transgenic potatoes. In: Belknap WR, Vayda ME & Park WD (eds) The Cellular and Molecular Biology of Potatoes (pp. 245-264). CAB Int, Wallingford Conner AJ & Dale PJ (1996) Reconsideration of pollen dispersal data from field trials of transgenic potatoes. Theor. Appl. Genet. 92: 505-508

    Google Scholar 

  • Crawley MJ, Brown SL, Hails RS, Kohn DD & Rees M (2001) Transgenic crops in natural habitats. Nature 409: 682-683

    Google Scholar 

  • Dale PJ, McPartlan HC, Parkinson R, MacKay GR & Scheffler JA (1992) Gene dispersal from transgenic crops by pollen. In: Casper R & Landsmann J (eds) The Biosafety Results for Field Tests of Genetically Modified Plants and Microorganisms. Proc. 2nd Int. Symp. Biol Bundesanstalt Landund Forswirtschaft, Braunschweig, Germany (pp. 73-78)

  • Desplanque B, Boundry P, Broomberg K, Saumitou-Laprade P, Cuguen J & van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor. Appl. Genet. 98: 1194-1201

    Google Scholar 

  • Doebley JF (1984) Maize introgressions into teosinte. A reappraisal. Ann. MO Bot. Gard. 71: 1100-1113

    Google Scholar 

  • Doebley J (1990) Molecular evidence for gene flow among zea species. BioScience 49: 443-447

    Google Scholar 

  • Doney DL, Whitney ED, Terry J, Frese L & Fitzgerald P (1990) The distribution and dispersal of Beta vulgaris L. ssp. maritima germplasm in England,Wales, and Ireland. J. Sugar Beet Res. 27: 29-37

    Google Scholar 

  • Eastham K & Sweet J (2002) Genetically Modified Organisms (GMOs): The Significance of Gene Flow Through Pollen Transfer. European Environment Agency, Copenhagen, Denmark

  • Eber F, Chèvre AM, Baranger A, Vallée P, Tanguy X & Renard M (1994) Spontaneous hybridization between a male-sterile oilseed rape and two weeds. Theor. Appl. Genet. 88: 362-368

    Google Scholar 

  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol. 125: 1543-1545

    Google Scholar 

  • Ellstrand NC, Prentice HC & Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30: 539-563

    Google Scholar 

  • Felsot A (2002) Some corny ideas about gene flow and biodiversity. Agrichem. Environ. News 193: 4-8

    Google Scholar 

  • Frankel R & Galun E (1977) Pollination Mechanisms, Reproduction and Plant Breeding. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Hancock JF, Grumet R & Hokanson SC (1996) The opportunity for escape of engineered genes from transgenic crops. HortScience 31: 1080-1085

    Google Scholar 

  • Harlan JR (1965) The possible role of weed races in the evolution of cultivated plants. Euphytica 4: 173-176

    Google Scholar 

  • Ingram J (2000) Report on the separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape. Commissioned by UK Ministry of Agriculture, Fisheries and Food (MAFF). Project No. RG0123

  • James C (2002) Global GM Crop Area Continues to Grow and Exceeds 50 million Hectares for First Time in 2001. ISAAA. Activities. In: http / /www.isaaa.org/ pres release /Global Area-Jan2002.htm

  • Jones MD & Brooks JS (1950) Effectiveness of distance and border rows in preventing outcrossing in corn. Oklahoma Agricultural Experimental Station. Technical Bulletin No. T-38

  • Kato TA (1997) Review of introgression between maize and teosinte. In: Serratos JA, Willcoz MC & Castillo-Gonzales (eds) Gene Flow Among Maize Landraces. Improved Maize Varieties and Teosinte: Implications for Transgenic Maize. CIMMYT, Mexico, DF. (pp. 44-53) (available at http / /www.cimmyt.org/ ABC/geneflow/geneflow-pdf-Engl/ contents.htm)

  • Khush GS (1993) Floral structure, pollination biology, breeding behaviour, transfer distance and isolation considerations. World Bank Technical Paper, Biotechnology Series No 1, Rice Biosafe-ty. The Rockefeller Foundation

  • Kiang YT, Antonovics J & Wu L (1979) The extinction of wild rice (Oryza perennis formosana) in Taiwan. J. Asian Ecol. 1: 1-9

    Google Scholar 

  • Klinger T, Elam DR & Ellstrand NC (1991) Radish as a model system for the study of engineered gene escapes via crop-weed mating. Conserv. Biol. 5: 531-535

    Google Scholar 

  • Langevin SA, Clay K & Grace JB (1990) The incidence and effects of hybridisation between cultivated rice and its related weed red rice (Oryza sativa L.). Evolution 44: 1000-1008

    Google Scholar 

  • Lavigne C, Klein EK, Pierre J, Godelle B & Renard M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor. Appl. Genet. 96: 886-896

    Google Scholar 

  • Lefol E, Danileou V & Darmency H (1996a) Predicting hybridization between transgenic oilseed rape and wild mustard. Field Crops Res. 45: 153-161

    Google Scholar 

  • Lefol E, Danileou V, Fleury A & Darmency H (1996b) Gene flow within a population of the outbreeding Sinapis arvensis: isozyme analysis of half-sib families. Weed Res. 36: 189-195

    Google Scholar 

  • Lefol E, Fleury A & Darmency H (1996c) Gene dispersal from transgenic crops. II. Hybridization between oilseed rape and the wild hoary mustard. Sex Plant Reprod. 9: 189-196

    Google Scholar 

  • Llewellyn D & Fitt G (1996) Pollen dispersal from two field trials of transgenic cotton in the Namoi Valley, Australia. Mol. Breed. 2: 157-166

    Google Scholar 

  • Louette D (1995) Seed exchange among farmers and gene flow among maize varieties in traditional agricultural systems. In: Serratos JA, Willcoz MC & Castillo-Gonzales (eds) Gene Flow Among Maize Landraces. Improved Maize Varieties and Teosinte: Implications for Transgenic Maize. CIMMYT, Mexico, DF (pp. 56-66) (available at http / /www.cimmyt.org/ABC/ geneflow/geneflow-pdf-Engl/ contents.htm)

  • Louette D & Smale M (2000) Farmer's seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113: 25-41

    Google Scholar 

  • Lutman PJW, Lopez-Granados F & Pekrun C (1994) The biology and control of volunteer oilseed rape. In: Proceedings of the Conference of Home-Grown Cereals Authority on Oilseed R and D (pp. 5.1-5.11)

  • Mann CC (2002) Has GM Corn 'Invaded' Mexico? Science 295: 16-17

    Google Scholar 

  • Martinez-Soriano JPR & Leal-Klevezas DS (2000) Transgenic maize in Mexico: no need for concern. Science 287: 1399

    Google Scholar 

  • Mayr E (1970) The breakdown of isolating mechanisms (hibridization) (Chapter 6). In: Populations, Species and Evolution (pp.69-81). Harvard University Press, Cambridge

    Google Scholar 

  • Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala MM, Baldi G & Mele E (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor. Appl. Genet. 103: 1151- 1159

    Google Scholar 

  • Metz PLJ, Jacobsen E & Stiekema WJ (1997) Aspects of the biosafety of transgenic oilseed rape (Brassica napus L.). Acta Bot. Neerl. 46: 51-67

    Google Scholar 

  • Mew TW, Datta SK, Oca A & Veracruz CM (1999) Evaluation of transgenic rice with the Xa gene for bacterial blight resistance. IRRI Program Report, 1999

  • Mikkelsen TR, Jensen J & Jorgensen RB (1996) Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris. Theor. Appl. Genet. 92: 492- 497

    Google Scholar 

  • Morris WK, Kareiva PM & Raymer PL (1994) Do barren zones and pollen traps reduce gene escape from transgenic crops? Ecol. Appl. 4:157-165

    Google Scholar 

  • National Research Council (NRC) (2000) Genetically Modified Pest-Protected Plants: Science and Regulation. National Academy Press, Washington, DC

    Google Scholar 

  • Noldin JA, Chandler JM & McCauley GN (1999) Red rice (Oryza sativa) biology: I. Characterization of red rice ecotypes. Weed Technol. 13: 12-18

    Google Scholar 

  • Oard J, Cohn MA, Linscombe S, Gealy D & Gavois K (2000) Field evaluation of seed production, shattering and dormancy in hybrid populations of transgenic rice (Oryza sativa) and the weed, red rice (Oryza sativa). Plant Sci. 157: 12-22

    Google Scholar 

  • Pessel FD & Lecomte J (2000) Towards an understanding of the dynamics of rape populations that have 'escaped' from largescale cultivation in an agricultural region. OCL 7: 324-328

    Google Scholar 

  • Pleasants JM, Hellmich RL, Dively GP, Sears MK, Stanley-Horn DE, Mattila HR, Foster JE, Clark TL & Jones GD (2001) Corn pollen deposition on milkweeds in and near cornfields. Proc. Natl. Acad. Sci. USA 98: 11919-11924

    Google Scholar 

  • Phipps RH & Park JR (2002) Environmental benefits of genetically modified crops: Global and European perspectives on their ability to reduce pesticide use. J. Anim. Feed Sci. 11: 1-18

    Google Scholar 

  • Pohl-Orf M, Brand U, Drieben S, Hesse PR, Lehnen M, Morak C, ¨ Mucher T, Saeglitz C, von Soosten C & Bartsch D (1999) Overwintering of genetically modified sugar beet, Beta vulgaris L. subsp. vulgaris, as a source for dispersal of transgenic pollen. Euphytica 108: 181-186

    Google Scholar 

  • Pohl-Orf M, Brand U, Schuphan I & Bartsch D (1998) The spread of foreign genes from genetically modified plants of Beta vulgaris L. - monitoring in agricultural and coastal ecosystems. In: Pfadenhauer J, Kappen L, Mahn EG, Otte A & Plachter H (eds) Verhandlungen der Gesellschaft fur Okologie, Vol. 28, Muncheberg, Germany (pp. 327-336)

    Google Scholar 

  • Price JS, Hobson RN, Neale MA & Bruce DM (1996) Seed losses in commercial harvesting of oilseed rape. J. Agric. Eng. Res. 65: 183-191

    Google Scholar 

  • Rothmaler W (1990) In: Schubert RV & Vent W (eds) Exkursionsflora von Deutschland. Kritischer Band (p. 811)

  • Saeglitz C, Pohl M & Bartsch D (2000) Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants. Mol. Ecol. 9: 20035-2040

    Google Scholar 

  • Scheffler JA, Parkingson R & Dale PJ (1993) Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transgenic Res. 2: 356-364

    Google Scholar 

  • Scheffler JA, Parkingson R & Dale PJ (1995) Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a selectable marker. Plant Breed. 114: 317-321

    Google Scholar 

  • Sears MK & Stanley-Horn D (2000) Proceedings of the 6th International Symposium on the Biosafety of Genetically Modified Organisms. In: Fairbairn C, Scoles G & McHughen A (eds) Proceedings of the 6th International Symposium on the Biosafety of Genetically Modified Organisms. University Extension Press, Canada

    Google Scholar 

  • Small E (1984) Hybridization in the domesticated-weed-wild complex. In: Grant WF (ed) Plant Biosystematics (pp. 195-210). Academic Press, Toronto

    Google Scholar 

  • Staniland BK, McVetty PBE, Friesen LF, Yarrow S, Freyssinet G & Freyssinet M (2000) Effectiveness of border areas in confining the spread of transgenic Brassica napus pollen. Can. J. Plant Sci. 80: 521-526

    Google Scholar 

  • St Amand PC, Skinner DZ & Peaden RN (2000) Risk of alfalfa transgene dissemination and scale-dependent effects. Theor. Appl. Genet. 101: 107-114

    Google Scholar 

  • Treu R & Emberlin J (2000) Pollen dispersal in the crops Maize (Zea mays), Oil seed rape (Brassica napus ssp. oleifera), Potatoes (Solanum tuberosum), Sugar beet (Beta vulgaris ssp. vulgaris) and wheat (Triticumaestivum). Report for the Soil Association from the National Pollen Research Unit, January 2000

  • Tynan JL, Williams MK & Conner AJ (1990) Low frequency of pollen dispersal from a field trial of transgenic potatoes. J. Genet. Breed. 44: 303-305

    Google Scholar 

  • Vigouroux Y, Darmency H, de Garambe TG & Richard-Molard M (1999) Gene flow between sugar beet and weed beet. In: Gene Flow and Agriculture: Relevance for Transgenic Crops. Proceedings of a Symposium held at Keele, UK, 12-14 April 1999,Vol. 72 (p. 9)

    Google Scholar 

  • Wheeler CC, Gealy D & TeBeest DO (2000) Bar gene transfer from transgenic rice (Oryza sativa) to red rice (Oryza sativa). In: Wells BR (ed) Ongoing Studies: Breeding, Genetics and Physiology (pp. 33-36). AAES Research Series

  • Yoshida S (1981) Growth and development of rice plants. In: The International Rice Research Institute (IRRI) (eds) Fundamentals of Rice Crops Science.

  • Zhang B-H, Guo T-L, Zhang BH & Guo TL (2000) Frequency and distance of pollen dispersal from transgenic cotton. Chinese J. Appl. Environ. Biol. 6: 39-42

    Google Scholar 

  • Zhang CQ, Lu QY, Wang ZZ, Jia SR, Zhang CQ, Lu QY, Wang ZX & Jia SR (1997) Frequency of 2,4-D resistant gene flow of transgenic cotton. Scientia-Agricultura Sinica 30: 92-93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquima Messeguer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messeguer, J. Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture 73, 201–212 (2003). https://doi.org/10.1023/A:1023007606621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023007606621

Navigation