Skip to main content
Log in

Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Correlations between the structural properties of Na2O-CaO-SiO2 glasses characterized by the activity of oxygen ions and the bioactivity were examined by comparing the compositional dependence of the structural parameters calculated on the basis of a thermodynamic consideration with that of the bioactivity. A simple model of characterizing the glass structure by considering the bridging and non-bridging oxygen ions was employed as the first step for this purpose. Further detailed thermodynamic analysis on the anionic constitution in the glass was performed and the compositional dependences of the relative proportions of bridging, non-bridging and free oxygen ions were calculated. The bioactive region corresponded to the compositional region characterized by the higher relative proportion of non-bridging oxygen ions with co-existing an appreciable concentration of bridging oxygen ions, suggesting a possible important role of the non-bridging oxygen ions on the surface chemical process of bone-like apatite layer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench, R. J. Splitner, W. C. Allen and T. K. Greenlee, J. Biomed. Mater. Res., 2 (1971) 117.

    Article  Google Scholar 

  2. L. L. Hench, J. Am. Ceram. Soc., 74 (1991) 1487.

    Article  CAS  Google Scholar 

  3. T. Kokubo, Biomater., 12 (1991) 155.

    Article  CAS  Google Scholar 

  4. L. L. Hench and J. Wilson, Introduction to Bioceramics, World Sci. Publ., London 1993.

    Google Scholar 

  5. L. L. Hench and J. K. West, Life chemistry reports, 13 (1996) 187.

    CAS  Google Scholar 

  6. L. L. Hench, J. Am. Ceram. Soc., 81 (1998) 1705.

    Article  CAS  Google Scholar 

  7. L. L. Hench and H. A. Paschal, J. Biomed. Mater. Res., 4 (1973) 25; 5 (1974) 49.

    Article  Google Scholar 

  8. T. Kokubo, S. Ito, S. Sakka and T. Yamamuro, J. Mater. Sci., 20 (1985) 2001; 21 (1986) 536.

    Article  CAS  Google Scholar 

  9. W. Holand, W. Vogel, K. Neumann and J. Gummel, J. Biomed. Mater. Res., 19 (1985) 303.

    Article  CAS  Google Scholar 

  10. A. E. Clark and L. L. Hench, J. Non-Cryst. Solids, 113 (1989) 195.

    Article  Google Scholar 

  11. L. L. Hench and J. K. West, Chem. Rev., 90 (1990) 33.

    Article  CAS  Google Scholar 

  12. T. Kokubo, J. Non-Cryst. Solids, 120 (1990) 138.

    Article  CAS  Google Scholar 

  13. O. H. Andersson, K. H. Karlsson and K. Kangasniemi, J. Non-Cryst. Solids, 119 (1990) 290.

    Article  CAS  Google Scholar 

  14. T. Kokubo, Thermochim. Acta, 280/281 (1996) 479.

    Article  Google Scholar 

  15. W. Cao and L. L. Hench, Ceramics Int., 22 (1996) 493.

    Article  CAS  Google Scholar 

  16. O. Peitl, E. D. Zanotto and L. L. Hench, J. Non-Cryst. Solids, 292 (2001) 115.

    Article  CAS  Google Scholar 

  17. Z. Strnad, Biomaterials, 13 (1992) 317.

    Article  CAS  Google Scholar 

  18. Z. Strnad and J. Šesták, 'Bio-compatible ceramics' in the Proceedings of the 3rd Inter. Conf. Intelligent Processing and Manufacturing of Materials, (J. Meel, Ed.) Vancouver Univ., p. 123.

  19. A. Šimunek, A. Štepánek, V. Zábrodský, Z. Nathanský and Z. Strnad, Quintessenz, 6 (1997) 3.

    Google Scholar 

  20. Z. Strnad, J. Strnad, M. Psotová, C. Povýšil and K. Urban, Quintessenz, 7 (1998) 5.

    Google Scholar 

  21. K. Urban, Z. Strnad, C. Povýšil and P. Sponer, Acta Chir. Orthop. Traum. Czech. 63 (1998) 16.

    Google Scholar 

  22. J. Strnad, A. Helebrant and J. Hamáčková, Glastech. Ber. Glass Sci. Tech., 73C (2000) 262.

    Google Scholar 

  23. Z. Strnad, Glass-ceramic materials; Liquid Phase Separation, Nucleation and Crystallization in Glasses, Elsevier, Amsterdam 1986.

    Google Scholar 

  24. L. L. Hench, Glastech. Ber. Glass Sci. Tech., 70C (1997) 439.

    CAS  Google Scholar 

  25. L. L. Hench, J. Biomed Mater. Res., 23 (1989) 685.

    Article  CAS  Google Scholar 

  26. L. L. Hench and J. K. West, J. Mater. Sci., 29 (1994) 3601.

    Article  Google Scholar 

  27. J. Šesták (Ed.), Vitrification, Transformation and Crystallization of Glasses, special issue of Thermochim. Acta, Vol. 280/281, Elsevier, Amsterdam 1996.

  28. J. Šesták, in Z. Chvoj, J. Šesták and A. Triska (Eds), Kinetic Phase Diagrams; Non-equilibrium Phase Transformations, Elsevier, Amsterdam 1991.

    Google Scholar 

  29. J. Šesták, Glastech. Ber. Glass. Sci. Tech., 70C (1997) 439.

    Google Scholar 

  30. J. Šesták, J. Therm. Anal. Cal., 61 (2000) 305.

    Article  Google Scholar 

  31. B. Hlaváček, J. Šesták and J. J. Mareš, J. Therm. Anal. Cal., 67 (2002) 239.

    Article  Google Scholar 

  32. J. Šesták and Z. Strnad, in Proc. 8th Int. Conf. Reactivity of Solids, Gothenburg, Elsevier, Amsterdam 1976, p. 410.

    Google Scholar 

  33. J. Šesták and Z. Strnad, in Proc. Int. Congress Glass '77, CVTS Publ. House, Prague 1977, Vol. 2, p. 249.

    Google Scholar 

  34. N. Koga, Z. Strnad and J. Šesták, Thermochim. Acta, 203 (1992) 361.

    Article  CAS  Google Scholar 

  35. N. Koga and J. Šesták, Biol. Soc. Esp. Ceram. Vidrio, 31 (1992) 185.

    CAS  Google Scholar 

  36. M. C. Weinberg, Thermochim. Acta, 280/281 (1996) 63.

    Article  Google Scholar 

  37. N. Koga, K. Yamaguchi and J. Šesták, J. Therm. Anal. Cal., 56 (1999) 755.

    Article  CAS  Google Scholar 

  38. M. C. Weinberg, J. Mining Metal. (Bor, Yugoslavia), 35 (1999) 197.

    CAS  Google Scholar 

  39. N. Koga and J. Šesták, J. Therm. Anal. Cal., 60 (2000) 667.

    Article  CAS  Google Scholar 

  40. N. Koga and J. Šesták, J. Am. Ceram. Soc., 83 (2000) 1753.

    Article  CAS  Google Scholar 

  41. I. M. Steevels, Philips Tech. Rundschau, 9/10 (1960) 337.

    Google Scholar 

  42. G. W. Toop and C. S. Samis, Trans. Metal. Soc. AIME, 224 (1962) 878.

    CAS  Google Scholar 

  43. C. R. Masson, Proc. Roy. Soc. A, 287 (1965) 201.

    CAS  Google Scholar 

  44. C. R. Masson, J. Am. Ceram. Soc., 51 (1968) 34.

    Article  Google Scholar 

  45. C. R. Masson, in Proc. Int. Congress Glass' 77, CVTS Publ. House, Prague 1977, Vol. 1, p. 1.

    Google Scholar 

  46. K. Závěta and J. Šesták, in Proc. Int. Congress Glass' 77, CVTS Publ. House, Prague 1977, Vol. 1, p. 399.

    Google Scholar 

  47. L. L. Hench, in P. Ducheyne and J. Lemons (Eds), Bioceramics, Vol. 523, Annals of New York Academy of Sciences, New York 1988, p. 54.

    Google Scholar 

  48. L. L. Hench, Handbook of Bioactive Ceramics, Vol.1, CRT Press, 1990, p. 7.

    Google Scholar 

  49. C. J. B. Fincham and F. D. Richardson, Proc. Roy. Soc., A223 (1954) 40.

    CAS  Google Scholar 

  50. M. Temkin, Zh. Fiz. Khim, 20 (1946) 105, (in Russian).

    Google Scholar 

  51. P. Balta and E. Balta, Introduction to Physical Chemistry of the Vitreous State, Abacus Press, Kent 1976, Chapter 3.

    Google Scholar 

  52. Y. Kawamoto and T. Tomozawa, Phys. Chem. Glasses, 22 (1981) 11.

    CAS  Google Scholar 

  53. H. M. Kim, F. Miyaji, T. Kokubo, C. Ohtsuki and T. Nakamura, J. Am. Ceram. Soc., 78 (1995) 2405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, N., Strnad, Z., Šesták, J. et al. Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics. Journal of Thermal Analysis and Calorimetry 71, 927–938 (2003). https://doi.org/10.1023/A:1023394730321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023394730321

Navigation