Skip to main content
Log in

Preparation and Characterization of Nanofibers Containing Amorphous Drug Dispersions Generated by Electrostatic Spinning

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We assessed the application of water-soluble polymer-based nanofibers prepared by electrostatic spinning as a means of altering the dissolution rate of the poorly water-soluble drug, itraconazole.

Methods. Organic solvent-based solutions of itraconazole/HPMC mixtures were electrostatically spun at 16 and 24 kV. The formed nanofibers were collected as a non-woven fabric. The samples were analyzed by scanning electron microscopy, differential scanning calorimetry, and dissolution rate.

Results. Scanning electron microscopy showed fiber diameters of 1-4 μm and 300-500 nm depending on the applied voltage. Differential scanning calorimetry measurements found that the melting endotherm for itraconazole was not present, suggesting the formation of an amorphous solid dispersion or solution. Dissolution studies assessed several presentations including direct addition of the non-woven fabrics to the dissolution vessels, folding weighed samples of the materials into hard gelatin capsules and placing folded material into a sinker. Controls included a physical mixture as well as solvent cast and melt extruded samples. Electrospun samples dissolved completely over time with the rate of dissolution depending on the formulation presentation and drug to polymer ratio. The physical mixture did not appreciably dissolve in these conditions.

Conclusions. The application of electrostatic spinning to pharmaceutical applications resulted in dosage forms with useful and controllable dissolution properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. A. Prentis, Y. Lis, and S. R. Walker. Pharmaceutical innovation by seven UK-owned pharmaceutical companies (1964-1985). Br. J. Clin. Pharmacol. 25:387-396 (1988).

    Google Scholar 

  2. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3-25 (1997).

    Google Scholar 

  3. C. A. Lipinski. Avoiding investment in doomed drugs. Curr. Drug Discov. 1:17-19 (2001).

    Google Scholar 

  4. A. A. Noyes and W. R. Whitney. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19:930-934 (1897).

    Google Scholar 

  5. D. E. Wurster and P. W. Taylor. Dissolution rates. J. Pharm. Sci. 54:169-175 (1965).

    Google Scholar 

  6. S. M. Grant and S. P. Clissold. Itraconazole. Drugs 37:310-344 (1989).

    Google Scholar 

  7. K. De Beule. and J. Van Gestel. Pharmacology of itraconazole. Drugs 61(Suppl. 1):27-33 (2001).

    Google Scholar 

  8. S. Jain and V. Seghal. Itraconazole: an effective oral antifungal for onchomychosis. Int. J. Dermatol. 40:1-5 (2001).

    Google Scholar 

  9. J. Peeters, P. Neeskens, J. P. Tollenaere, P. Van Remoortere, and M. E. Brewster. Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4 and 7. J. Pharm. Sci. 91:1414-1422 (2002).

    Google Scholar 

  10. P. Sheen, V. Khetarpal, C. Cariola, and C. Rowlings. Formulation of a poorly water-soluble drug in solid dispersions to improve bioavailability. Int. J. Pharm. 118:221-227 (1995).

    Google Scholar 

  11. A. T. Serajuddin. Solid dispersion of poorly water-soluble drugs. Early promises, subsequent problems and recent breakthroughs. J. Pharm. Sci. 88:1058-1066 (1999).

    Google Scholar 

  12. C. Leuner. and J. Dressman. Improving drug solubility for oral delivery using solid dispersion. Eur. J. Pharm. Biopharm. 50:47-60 (2000).

    Google Scholar 

  13. D. Erkoboni and R. Andersen. Improved aqueous solubility pharmaceutical formulation. World Patent 0056726 (2000).

  14. P. A. Gilis, V. De Conde, and R. Vandecruys. Beads having a core coated with an antifungal and a polymer. US Patent 5633015 (1997).

  15. L. Baert, D. Thone, and G. Verreck. Antifungal compositions with improved bioavailability. World Patent 9744014 (1997).

  16. D. H. Reneker and I. Chun. Nanometre diameter of polymer, produced by electrospinning. Nanotechnology 7:216-223 (1996).

    Google Scholar 

  17. J. Doshi and D. H. Reneker. Electrospinning process and applications of electrospun fibers. J. Electrostatics 35:151-160 (1995).

    Google Scholar 

  18. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release 81:57-64 (2002).

    Google Scholar 

  19. F. Ignatious and J.M. Baldoni. Electrospun pharmaceutical compositions. World Patent 0154667 (2001).

  20. A. L. Yarin, S. Koombhongse, and D. H. Reneker. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 90:4836-4846 (2001).

    Google Scholar 

  21. A. L. Yarin, S. Koombhongse, and D. H. Reneker. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89:3018-3026 (2001).

    Google Scholar 

  22. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymers 42:261(2001).

    Google Scholar 

  23. D. S. Kath, K. W. Robinson, M. A. Attawia, F. K. Ko, and C. T. Laurencin. Bioresorbable nanofiber based systems for wound healing: optimization of fabrication parameters. Transactions of the 28th Annual Meeting for the Society for Biomaterials, 143(2002).

  24. K. Six, G. Verreck, J. Peeters, K. Binnemans, K. Bergmans, P. Augustijns, R. Kinget, and G. Van den Mooter. Investigation of thermal properties of glassy itraconazole: identification of monotropic mesophase. Thermochim. Acta 376:175-181 (2001).

    Google Scholar 

  25. F. N. Kelley and F. Bueche. Viscosity and glass-transition temperature relations for polymer-dilute systems. J. Poly. Sci. 50:549-556 (1961).

    Google Scholar 

  26. M. Gordon and J. S. Taylor. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Noncrystalline copolymers. J. Appl. Chem. 2:493-500 (1952).

    Google Scholar 

  27. R. Simha and R. F. Boyer. General relation involving the glass temperature and coefficients of expansion of polymers. J. Chem. Phys. 37:1003-1007 (1962).

    Google Scholar 

  28. T. Kissel, M. A. Rummelt, and H. P. Bier. Wirkstoffreisetzung aus bioabbaubaren Mikropartikeln. Dtsch. Apoth. Ztg. 133:29-32 (1993).

    Google Scholar 

  29. G. Verreck, L. Baert, J. Peeters, and M. Brewster. Improving aqueous solubility and bioavailability for itraconazole by solid dispersion approach. AAPSPharmSci 3:M2157(2001).

    Google Scholar 

  30. K. Six, C. Leuner, J. Dressman, G. Verreck, J. Peeters, N. Blaton, P. Augustijns, R. Kinget, and G. Van den Mooter. Thermal properties of hot-stage extrudates of itraconazole and Eudragit E100. Phase separation and polymorphism. J. Thermal Anal. Calorimetry 68:591-601 (2002).

    Google Scholar 

  31. L. Baert, J. Peeters and G. Verreck. Solid mixtures of cyclodextrins prepared via melt-extrusion. World Patent 9718839 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus E. Brewster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verreck, G., Chun, I., Peeters, J. et al. Preparation and Characterization of Nanofibers Containing Amorphous Drug Dispersions Generated by Electrostatic Spinning. Pharm Res 20, 810–817 (2003). https://doi.org/10.1023/A:1023450006281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023450006281

Navigation