Skip to main content
Log in

A Temperature Dependence of the Intra- and Extracellular Fatty-Acid Composition of Green Algae and Cyanobacterium

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of ambient temperature on the composition of intracellular fatty acids and the release of free fatty acids (FFA) into a medium by cyanobacterium Spirulina platensis and eukaryotic microalgae, Chlorella vulgaris and Botryococcus braunii, was studied using their batch cultures. It was found that all the species studied, regardless of their taxonomic status, responded to the temperature regime by similar changes in their intracellular fatty acid composition: the relative content of more unsaturated fatty acids decreased with the elevation of temperature. At the same time, in the prokaryote, this temperature shift blocked, first of all, the elongation of 16:0 to 18:0 and then their further desaturation. In eukaryotes, the change in the desaturation of dienoic to trienoic fatty acids was the most pronounced process. The ratio of dienoic to trienoic fatty acids remained almost unchanged in S. platensis. The relative content of extracellular unsaturated FFA increased in the prokaryotic organism S. platensis at a higher temperature. But no significant changes in the composition of extracellular unsaturated FFA were detected in eukaryotic algae upon temperature elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kenyon, C.N., Rippka, R., Stanier, R., Fatty Acid Composition and Physiological Properties of Some Filamentous Blue-Green Algae, Arch. Microbiol., 1972, vol. 83, pp. 216–236.

    Google Scholar 

  2. Cobalas, M.A. and Lechado, J.Z., Lipids in Microalgae. A Review: 1. Biochemistry, Grasas y Aceites (Esp.), 1989, vol. 40, pp. 118–145.

    Google Scholar 

  3. Claustre, H., Marty, J.C., and Cassiani,L., Intraspecies Differences in the Biochemical Composition of a Diatom in Villefranche-sur-Mer-Bay, Mediterranean Sea, I. Exp. Mar. Biol. Ecol., 1989, vol. 129, pp. 17–32.

    Google Scholar 

  4. Vestal, J.R. and White, D.C., Lipid Analysis in Microbial Ecology. Quantitative Approaches to the Study of Microbial Communities, BioScience, 1989, vol. 39, pp. 535–540.

    Google Scholar 

  5. Reemtsma, T., Haake, B., Ittekkot, V., Naur, R., and Brockmann, U., Downward Flux of Particulate Fatty Acids in the Central Arabian Sea, Mar. Chem., 1990, vol. 29, pp. 183–202.

    Google Scholar 

  6. Gladyshev, M.I., Kalacheva, G.S., and Sushchik, N.N., Free Fatty Acids of Surface Film in the Sydinsky Bay of the Krasnoyarsk Reservoir, Int. Rev. Hydrobiol., 1993, vol. 78, pp. 575–578.

    Google Scholar 

  7. Gladyshev, M.I., Sushchik, N.N., Kalacheva, G.S., and Shchur, L.A., Free Fatty Acid Composition in the Water Surface Film and the Kinetics of Self-Purification from Phenolic Compounds in the Forest Pond during “Flowering” of Volvox aureus, Dokl. Akad. Nauk, 1996, vol. 349, pp. 840–843.

    Google Scholar 

  8. Billmire, E. and Aaronson, S., The Secretion of Lipids by the Freshwater Phytoflagellata Ochromonas danica, Limnol. Oceanogr., 1976, vol. 21, pp. 138–140.

    Google Scholar 

  9. Fogg, G.E., The Ecological Significance of Extracellular Products of Phytoplankton Photosynthesis, Bot. Mar., 1983, vol. 25, pp. 3–14.

    Google Scholar 

  10. Zlotnik, I. and Dubinsky, Z., The Effect of Light and Temperature on DOC Excretion by Phytoplankton, Limnol. Oceanogr., 1989, vol. 34, pp. 831–839.

    Google Scholar 

  11. Staats, N., de Winder, B., Stal, L.J., and Muur, L.R., Isolation and Characterization of Extracellular Polysaccharides from Epipelic Diatoms Cylindrotheca closterium and Navicula salinarium, Eur. J. Phycol., 1999, vol. 34, pp. 161–169.

    Google Scholar 

  12. Parrish, C.C., Dissolved and Particulate Marine Lipid Classes: A Review, Mar. Chem., 1988, vol. 23, pp. 17–40.

    Google Scholar 

  13. Kattner, G. and Brockmann, U.H., Fatty Acid Composition of Dissolved and Particulate Matter in Surface Films, Mar. Chem., 1978, vol. 63, pp. 233–241.

    Google Scholar 

  14. Mayers, A.P and Kawka, O.E., Fractionation of Hydrophobic Organic Materials in Surface Microlayers, J. Great Lakes Res., 1982, vol. 8, pp. 288–298.

    Google Scholar 

  15. Reynolds, C.S., The Ecology of Freshwater Phytoplankton, Cambridge: Cambridge Univ. Press, 1984.

    Google Scholar 

  16. Harwood, J.L. and Jones, A.L., Lipid Metabolism in Algae, Adv. Bot. Res., 1989, vol. 10, pp. 1–53.

    Google Scholar 

  17. Sirenko, L.A., The Technology of Alga Laboratory Culivation, Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v hidrobiologicheskoi praktike (Methods for Physiological and Biochemical Studying of Algae in the Hydrobiology), Topachevsky, A.V., Ed., Kiev: Naukova Dumka, 1975, pp. 5–18.

    Google Scholar 

  18. Volova, T.G., Kalacheva, G.S., Zhila, N.O., and Plotnikov, V.F., Physiological and Biochemical Properties of the Alga Botryococcus brauni, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 893–898 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  19. Kalacheva, G.S. and Sushchik, N.N., Fatty Acid Composition of Spirulina platensis as Related to the Age and Mineral Nutrition of the Culture, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 275–282 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  20. Pinevich, V.V., Versilin, N.N., and Mikhailov, A.A., Studying of Spirulina platensis, a New Organism for Highly Intensive Cultivation, Fiziol. Rast. (Moscow), 1970, vol. 17, pp. 1037–1046 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  21. Kalacheva, G.S., Zhila, N.O., and Volova, T.G., Lipids of the Green Alga Botryococcus brauni at Various Stages of Its Development in the Periodic Culture, Mikrobiologiya, 2001, vol. 70, pp. 305–312.

    Google Scholar 

  22. Gladyshev, M.I., Emelianova, A.Y., Kalacheva, G.S., Zotina, T.A., Gaevsky, N.A., and Zhilenkov, M.D., Gut Content Analysis of Grammarus lacustris from a Siberian Lake Using Biochemical and Biophysical Methods, Hydrobiologiya, 2000, vol. 431, pp. 155–163.

    Google Scholar 

  23. Christie, W.W., Gas Chromatography and Lipids. A Practical Guide, Ayr (Scotland): The Oily Press, 1989.

    Google Scholar 

  24. Plokhinsky, N.A., Algoritmy biometrii (Algorhythms of Biometry), Moscow: Mosk. Gos. Univ., 1980.

    Google Scholar 

  25. Somerville, C. and Browse, J., Plant Lipids: Metabolism, Mutants, and Membranes, Science, 1991, vol. 252, pp. 80–87.

    Google Scholar 

  26. Sakamoto, T., Shen, G., Higashi, S., Murata N., and Bryant, D.A., Alteration of Low-Temperature Susceptibility of the Cyanobacterium Synechococcus sp. PCC7002 by Genetic Manipulation of Membrane Lipid Unsaturation, Arch. Microbiol., 1998, vol. 169, pp. 2820–2887.

    Google Scholar 

  27. Thompson, G.A., Lipids and Membrane Function in Green Algae, Biochim. Biophys. Acta, 1996, vol. 1302, pp. 17–45.

    Google Scholar 

  28. DioRusso, C.C., Black, P.N., and Weimar, J.D., Molecular Inroads into Regulation and Metabolism of Fatty Acids, Lessons from Bacteria, Prog. Lip. Res., 1999, vol. 38, pp. 129–197.

    Google Scholar 

  29. Parrish, C.C., Bodennec, G., Sebedio, J.-L., and Gentien, P., Intra-and Extracellular Lipids in Cultures of the Toxic Dinoflagellata Gyrodinium aureolum, Phytochemistry, 1993, vol. 32, pp. 291–295.

    Google Scholar 

  30. Cohen, Z., Norman, H.A., and Heimer, Y.M., Microalgae as a Source of δ3 Fatty Acids, Plants in Human Nutrition. World Review of Nutrition and Dietetics, vol. 16, Simopoulos, A.P., Ed., Basel: Karger, pp. 1-31.

  31. Los, D.A., Fatty Acid Desaturases: Adaptive Expression and Principles of Regulation, Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 528–540 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sushchik, N.N., Kalacheva, G.S., Zhila, N.O. et al. A Temperature Dependence of the Intra- and Extracellular Fatty-Acid Composition of Green Algae and Cyanobacterium. Russian Journal of Plant Physiology 50, 374–380 (2003). https://doi.org/10.1023/A:1023830405898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023830405898

Navigation