Skip to main content
Log in

Synthesis and characterization of nano-HA/PA66 composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Based on the bioactivity and biocompatibility of hydroxyapatite (HA) and the excellent mechanical performance of polyamide 66 (PA66), a composite of nanograde HA with PA66 was designed and fabricated to mimic the structure of biological bone which exhibits a composite of nanograde apatite crystals and natural polymer. The HA/PA66 composite combines the bioactivity of HA and the mechanical property of PA66. This study focused on the preparation method of HA/PA66 composite and the influence of HA crystals on the characterization of the composite. HA slurry was used directly to prepare HA/PA66 composite by a solution method, in which HA is able to form hydrogen bond, i.e. chemical bonding with PA66. The nano-HA needle-like crystals treated by hydrothermal method are better in the particle size distribution and the particle dispersion. The morphology, crystal structure and crystallinity as well as crystal size of these needle-like crystals are similar to bone apatite. The nano-HA needle-like crystals dispersed uniformly in PA66 matrix with reinforcement effect and can prevent the micro-crackle spreading into cleft and fracture during the deformation process. The mechanical testing shows that the nano-HA/PA66 composite has a good mechanical property, and may be a promising bone replacement material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. De Groot (ed.)Bioceramics of Calcium Phosphate (CRC Press, Boca Raton, FL, 1983) p. 99.

    Google Scholar 

  2. H. Aoki, Science and Medical Application of Hydroxyapatite (JAAS Press, Japan, 1991).

    Google Scholar 

  3. M. Jarcho, Clin. Orthop. Rel. Res. 157 (1981) 259.

    Google Scholar 

  4. T. Hanawa and M. Ota, Appl. Surface Sci. 55 (1992) 269.

    Google Scholar 

  5. S. P. Sousa and M. A. Barbosa, Clin. Mater. 14 (1993) 287.

    Google Scholar 

  6. W. Bonfield, J. C. Behiri, C. Doyle, J. Bowman and J. AbramsBiomaterials and Biomechanics 1983, edited by P. Ducheyne, G. Van der Perre and A. E. Aubert (Elsevier, 1984) p. 421.

  7. Q. Liu, J. R. De Wiji and C. A. Van Blitterswijk, Transactions of Fifth World Biomaterials Congress, Toronto, Canada, 1996, 2, p. 361.

    Google Scholar 

  8. Q. Liu, J. R. De Wiji and C. A. Van Blitterswijk, Transactions of Fifth World Biomaterials Congress, Toronto, Canada, 1996, 2, p. 443.

    Google Scholar 

  9. C. Doyle, Z. B. Luklinska, K. E. Tanner and W. BonfieldClinical Implant Materials, 1983, edited by G. Heimke, U. Soltesz and A. J. C. Lee, series Adv. Biomater. Elsevier 9 (1990) 339.

  10. P. Li, D. Bakker and C. A. Van Blitterswijk, J. Biomater. Mater. Res. 34 (1997) 79.

    Google Scholar 

  11. C. Doyle, K. E. Tanner, N. Anseau and W. Bonfield, Transactions of Third World Biomaterials Congress, 1988, Vol. 3, p. 469.

    Google Scholar 

  12. C. Doyle, K. E. Tanner and W. Bonfield, Biomaterials 12 (1991) 841.

    Google Scholar 

  13. X. L. DongEssentials of Advanced Materials for High Technology, edited by H. M. Zeng (Science and Technology Press of China, 1993) p. 561.

    Google Scholar 

  14. A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello and K. N. Suarez, J. In. Biochem. 68 (1997) 45.

    Google Scholar 

  15. F. H. Lin, C. J. Liao, K. S. Chen and J. S. Sun, Biomaterials 20 (1999) 475.

    Google Scholar 

  16. Y. B. Li, J. De Wijn, C. P. A. T. Klein and S. Van De Meer, K. De Groot, J. Mater. Sci. Mater. Med. 5 (1994) 252.

    Google Scholar 

  17. J. Q. Feng, J. X. Wang, Y. B. Li, Y. G. Yan, M. Huang and X. D. ZhangBiomedical Materials Research in Asia (IV), edited by Xingdong Zhang and Yooshito Ikada (Kobunshi Kankokai, Kyoto, Japan) p. 77.

  18. J. X. Wang, Y. B. Li, J. Q. Feng, Y. G. Yan, M. Huang and X. D. Zhang, High Technol. Lett. 5 (1999) 103.

    Google Scholar 

  19. Y. B. Li, C. P. A. T. Klein, J. De Wijn, S. Van De Meer and K. De Groot, J. Mat. Sci. Mater. Med. 5 (1994) 263.

    Google Scholar 

  20. Y. B. Li, K. De Groot, J. De Wijn, C. P. A. T. Klein and S. Van De Meer, ibid. 5 (1994) 326.

    Google Scholar 

  21. S. N. Nazhat, R. Joseph, M. Wang, R. Smith, K. E. Tanner and W. Bonfield, ibid. 11 (2000) 621.

    Google Scholar 

  22. M. Wang, C. Berry, M. Braden and W. Bonfield, ibid. 9 (1998) 621.

    Google Scholar 

  23. X. S. ZengEncyclopedia of Materials Science and Technology, edited by Changxu Shi (China Encyclopedia Press, Beijing, 1995) p. 1187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M., Feng, J., Wang, J. et al. Synthesis and characterization of nano-HA/PA66 composites. Journal of Materials Science: Materials in Medicine 14, 655–660 (2003). https://doi.org/10.1023/A:1024087410890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024087410890

Keywords

Navigation