Skip to main content
Log in

A Note on Epsilon-Inflation

  • Published:
Reliable Computing

Abstract

The epsilon-inflation proved to be useful and necessary in many verification algorithms. Different definitions of an epsilon-inflation are possible, depending on the context. Recently, certain theoretical justifications and optimality results were proved for an epsilon-inflation without absolute term. In this note we show that in currently used interval iterations the epsilon-inflation without absolute term does not serve the purpose it is defined for. A new epsilon-inflation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACRITH High-Accuracy Arithmetic Subroutine Library, Program Description and User's Guide, IBM Publications, (SC 33-6164-3), 1986.

  2. Alefeld, G.: Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar Product, in: Kaucher, E., Kulisch, U., and Ullrich, Ch. (eds), Computerarithmetic, Teubner Stuttgart, 1987, pp. 9–30.

  3. ARITHMOS, Benutzerhandbuch, Siemens AG, Bibl.-Nr. U 2900-I-Z87-1, 1986.

  4. Berman, A. and Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences, SIAM classics in Applied Mathematics, Philadelphia, 1994.

    Google Scholar 

  5. Caprani, O. and Madsen, K.: Iterative Methods for Interval Inclusion of Fixed Points, BIT 18 (1978), pp. 42–51.

    Google Scholar 

  6. Hammer, M., Hocks, R., Kulisch, U., and Ratz, D.: Numerical Toolbox for Verified Computing. I. Basic Numerical Problems, Springer Veralg, Heidelberg, N.Y., 1993.

    Google Scholar 

  7. Herzberger, J. (ed.): Topics in Validated Computations—Studies in Computational Mathematics, North-Holland, 1995.

  8. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch, M.: C-XSC A C++ Class Library for Extended Scientific Computing, Springer, Berlin, 1993.

    Google Scholar 

  9. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing 4 (1969), pp. 187–201.

    Google Scholar 

  10. Kreinovich, V., Starks, S., and Mayer, G.: On a Theoretical Justification of the Choice of Epsilon-Inflation in PASCAL-XSC, Reliable Computing 3(4) (1997), pp. 437–445.

    Google Scholar 

  11. Mayer, G.: Epsilon-Inflation in Verification Algorithms, Journal of Computational and Applied Mathematics 60 (1995), pp. 147–169.

    Google Scholar 

  12. Moore, R. E.: A Test for Existence of Solutions for Non-Linear Systems, SIAM J. Numer. Anal. 4 (1977), pp. 611–615.

    Google Scholar 

  13. Rump, S. M.: Kleine Fehlerschranken bei Matrixproblemen, Dissertation, Universität Karlsruhe, 1980.

  14. Rump, S. M.: On the Solution of Interval Linear Systems, Computing 47 (1992), pp. 337–353.

    Google Scholar 

  15. Varga, R. S.: Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

    Google Scholar 

  16. Walter, W. V.: A Portable Fortran 90 Module Library for Accurate and Reliable Scientific Computing, Computing, Suppl. 9 (1993), pp. 265–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rump, S.M. A Note on Epsilon-Inflation. Reliable Computing 4, 371–375 (1998). https://doi.org/10.1023/A:1024419816707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024419816707

Keywords

Navigation