Skip to main content
Log in

Tropical Glacier and Ice Core Evidence of Climate Change on Annual to Millennial Time Scales

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper examines the potential of the stable isotopic ratios, 18O/16O (δ 18Oice)and 2H/1H (δ Dice), preserved in mid to low latitude glaciers as a toolfor paleoclimate reconstruction. Ice cores are particularly valuable as they contain additional data, such as dust concentrations, aerosol chemistry, and accumulation rates, that can be combined with the isotopic information to assist with inferences about the regional climate conditions prevailing at the time of deposition. We use a collection of multi-proxy ice core histories to explore the δ 18O-climate relationship over the last 25,000 years that includes both Late Glacial Stage (LGS) and Holocene climate conditions. These results suggest that on centennial to millennial time scales atmospheric temperature is the principal control on the δ 18Oice of the snowfall that sustains these high mountainice fields.Decadally averaged δ 18Oice records from threeAndean and three Tibetan ice cores are composited to produce a low latitude δ 18Oice history for the last millennium. Comparison ofthis ice core composite with the Northern Hemisphere proxy record (1000–2000A.D.) reconstructed by Mann et al. (1999) and measured temperatures(1856–2000) reported by Jones et al. (1999) suggests the ice cores have captured the decadal scale variability in the global temperature trends. These ice cores show a 20th century isotopic enrichment that suggests a large scale warming is underway at low latitudes. The rate of this isotopically inferred warming is amplified at higher elevations over the Tibetan Plateau while amplification in the Andes is latitude dependent with enrichment (warming) increasing equatorward. In concert with this apparent warming, in situobservations reveal that tropical glaciers are currently disappearing. A brief overview of the loss of these tropical data archives over the last 30 years is presented along with evaluation of recent changes in mean δ18Oice composition. The isotopic composition of precipitation should be viewed not only as a powerful proxy indicator of climate change, but also as an additional parameter to aid our understanding of the linkages between changes in the hydrologic cycle and global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C.: 2001, ‘Tropical Climate Changes at Millennial and Orbital Timescales on the Bolivian Altiplano’, Nature 409, 698–701.

    Google Scholar 

  • Beck, J. W., Récy, J., Taylor, F., Edwards, R. L., Cabioch, G.: 1997, ‘Abrupt Changes in Early Holocene Tropical Sea Surface Temperature Derived from Coral Records’, Nature 385, 705–707.

    Google Scholar 

  • Bradley, R. S.: 2000, ‘Past Global Changes and their Significance for the Future’, Quat. Sci. Rev. 19, 391–402.

    Google Scholar 

  • Brecher, H. and Thompson, L. G.: 1993, ‘Measurement of the Retreat of Qori Kalis in the Tropical Andes of Peru by Terrestrial Photogrammetry’, Photogrammetric Engineer. Remote Sens. 59, 1017–1022.

    Google Scholar 

  • Broecker, W. S.: 1995, ‘Cooling the Tropics’, Nature 376, 212–213.

    Google Scholar 

  • Broecker, W. S. and Denton, G. H.: 1990, ‘Implications of Global Snowline Lowering During Glacial Time to Glacial Theory’, Quat. Sci. Rev. 9, 305–341.

    Google Scholar 

  • Colinvaux, P. A., DeOliveira, P. E., Moreno, J. E., Miller, M. C., and Bush, M. B.: 1996, ‘A Long Pollen Record from Lowland Amozonia Forest and Cooling in Glacial Times’, Science 274, 85–88.

    Google Scholar 

  • Dansgaard, W. S.: 1964, ‘Stable Isotopes in Precipitation’, Tellus 16, 436–468.

    Google Scholar 

  • Dansgaard W. and Oeschger, H.: 1989, ‘Past Environmental Long-Term Records from the Arctic’, in Oeschger, H. and Langway, J. J. Jr. (eds.), The Environmental Record in Glaciers and Ice Sheets, Wiley, Chichester, pp. 287–318.

    Google Scholar 

  • Grootes, P. M., Stuiver, M., Thompson, L. G., and Mosley-Thompson, E.: 1989, ‘Oxygen Isotope Changes in Tropical Ice, Quelccaya, Peru’, J. Geophys. Res. 94, 1187–1194.

    Google Scholar 

  • Grootes, P.M., Stuiver, M., White, J.W. C., Johnsen, S., and Jouzel, J.: 1993, ‘Comparison of Oxygen Isotope Records from the GISP2 and GRIP Greenland Ice Cores’, Nature 366, 552–554.

    Google Scholar 

  • Guilderson, T. P., Fairbanks, R. G., and Rubenstein, J. L.: 1994, ‘Tropical Temperature Variations since 20,000 Years Ago: Modulating Interhemispheric Climate Change’, Science 263, 663–665.

    Google Scholar 

  • Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., Peterson, T., and Karl, T.: 2001, ‘A Closer Look at United States and Global Surface Temperature Change’,J. Geophys. Res. 106, 23947–23963.

    Google Scholar 

  • Hastenrath, S. and Greischar, L.: 1997, ‘Glacier Recession on Kilimanjaro, East Africa, 1912$#x2013;89’, J. Glaciol. 43, 455–459.

    Google Scholar 

  • Hastenrath, S. and Kruss, P. D.: 1992, ‘The Dramatic Retreat of Mount Kenya's Glaciers between 1963 and 1987’, Ann. Glaciol. 16, 127–133.

    Google Scholar 

  • Henderson, K. A., Thompson, L. G., and Lin, P.-N.: 1999, ‘Recording of El Niño in Ice Core ? 18O Records from Nevado Huascarán’, J. Geophys. Res. 104, 31053–31065.

    Google Scholar 

  • Herd, D. G. and Naeser, C.W.: 1974, ‘Mountain Snowline Lowering in the Tropical Andes’, Geology 2, 603–604.

    Google Scholar 

  • Jones, P. D., New, M., Parker, D. E., Martin, S., and Rigor, I. G.: 1999, ‘Surface Air Temperature and its Changes over the Past 150 Years’, Rev. Geophys. 37, 173–199.

    Google Scholar 

  • Johnsen, S. J., Dansgaard, W., Clausen, H. B., and Langway, C. C. Jr.: 1972, ‘Oxygen Isotope Profiles through the Antarctic and Greenland Ice Sheets’, Nature 235, 429–433.

    Google Scholar 

  • Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I., Kotlyakov, V. M., and Petrov, V. M.: 1987, ‘Vostok Ice Core: A Continuous Isotope Temperature Record over the Last Climatic Cycle (160,000 years)’, Nature 329, 403–408.

    Google Scholar 

  • Kaser, G. and Noggler, B.: 1991, ‘Observations on Speke Glacier, Ruwenzori Range Uganda’,J. Glaciol. 37, 315–318.

    Google Scholar 

  • Klein, A. G., Isacks, B. L., and Bloom, A. L.: 1995, ‘Modern and Last Glacial Maximum Snowline in Peru and Bolivia: Implications for Regional Climatic Change’, Bulletin de l'Institut Français d'Études Andines 24, 607–617.

    Google Scholar 

  • Liu, X. and Chen, B.: 2000, ‘Climatic Warming in the Tibetan Plateau during Recent Decades’, Int. J. Clim. 20, 1729–1742.

    Google Scholar 

  • Mann, M. E, Bradley, R. S., and Hughes, M. K.: 1999, ‘Northern Hemisphere Temperatures during the Past Millennium: Inferences, Uncertainties, and Limitations’, Geophys. Res. Lett. 26, 759–562.

    Google Scholar 

  • Osmaston, H. A.: 1965, Snowline Lowering on the Mountains of Tropical Africa, Ph.D. Thesis, Oxford University, Worcester College.

    Google Scholar 

  • Pierrehumbert, R. T.: 1999, ‘Huascarán ? 18O as an Indicator of Tropical Climate during the Last Glacial Maximum’, Geophys. Res. Lett. 26, 1345–1348.

    Google Scholar 

  • Pierrehumbert, R. T.: 2000, ‘Climate Change and the Tropical Pacific: The Sleeping Dragon Wakes’, Proc. Nat. Acad. Sci. 97, 1355–1358.

    Google Scholar 

  • Porter, S. C.: 1979, ‘Glacial Snowline Lowering in Hawaii’, Geol. Soc. Am. Bull. 90, 980–1093.

    Google Scholar 

  • Rind, D.: 1998, ‘Latitudinal Temperature Gradients and Climate Change’, J. Geophys. Res. 103, 5943–5971.

    Google Scholar 

  • Rodbell, D. T.: 1992, ‘Snowline Lowering in the Peruvian Andes’, Boreas 21, 43–52.

    Google Scholar 

  • Schrag, D. P., Hampt, G., and Murray, D. W.: 1996, ‘Pore Fluid Constraints on the Temperature and Oxygen Isotopic Composition of the Glacial Ocean’, Science 272, 1930–1932.

    Google Scholar 

  • Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J. F., Schlosser, P., Broecker, W. S., and Bonani, G.: 1995, ‘Cooling of Tropical Brazil (5°C) during the Last Glacial Maximum’, Science 269, 379–383.

    Google Scholar 

  • Thompson, L. G.: 2000. ‘Ice Core Evidence for Climate Change in the Tropics: Implications for Our Future’,Quat. Sci. Rev. 19, 19–35.

    Google Scholar 

  • Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K. A. Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., and Cole-Dai, J. A.: 1998, ‘25,000 Year Tropical Climate History from Bolivian Ice Cores’, Science 282, 1858–1864.

    Google Scholar 

  • Thompson, L. G., Mosley-Thompson E., Bolzan, J. K., and Koci, B. R.: 1985, ‘A-1500 Year Record of Tropical Precipitation Recorded in Ice Cores from the Quelccaya Ice Cap, Peru’, Science 229, 971–973.

    Google Scholar 

  • Thompson, L. G. Mosley-Thompson, E., Dansgaard, W., and Grootes, P. M.: 1986, ‘The “Little Ice Age” as Recorded in the Stratigraphy of the Tropical Quelccaya Ice Cap’, Science 234, 361–364.

    Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., Davis M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., and Beer J.: 2002, ‘Kilimanjaro Ice Core Records: Evidence of Holocene Climate Change in Tropical Africa’, Science 298, 589–593.

    Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., Davis, M. E. Lin, P-N, Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K-b.: 1995, ‘Late Glacial Stage and Holocene Tropical Ice Core Records from Huascaran, Peru’, Science 269, 46–50.

    Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Yao, T., Dyurgerov, M., and Dai, J.: 1993, ‘“Recent Warming”: Ice Core Evidence from Tropical Ice Cores with Emphasis upon Central Asia’, Global and Planetary Change 7, 145–156.

    Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., and Henderson, K. A.: 2000a, ‘Ice Core Paleoclimate Records in Tropical South America since the Last Glacial Maximum’, J. Quat. Sci. 15, 377–394.

    Google Scholar 

  • Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., and Bolzan, J. F.: 1997, ‘Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core’, Science, 276, 1821–1825.

    Google Scholar 

  • Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P.-N.: 2000b, ‘A High-Resolution Millennial Record of the South Asian Monsoon from Himalayan Ice Cores’, Science 289, 1916–1919.

    Google Scholar 

  • Vuille, M. and Bradley, R. S.: 2000, ‘Mean Annual Temperature Trends and Their Vertical Structure in the Tropical Andes’, Geophys. Res. Lett. 27, 3885–3888.

    Google Scholar 

  • Vuille, M., Bradley, R. S., Healy, R., Werner, M., Hardy, D. R., Thompson, L. G., and Keimig F.:2002, ‘Modeling ? 18O in Precipitation over the Tropical Americas, Part II: Simulation of the Stable Isotope Signal in Andean Ice Cores’, J. Geophys. Res., in press.

  • Yao, T., Thompson, L. G., Mosley-Thompson, E., Zhihong, Y., Xingping, Z., and Lin, P.-N.: 1996, ‘Climatological Significance of ?18O in North Tibetan Ice Cores’, J. Geophys. Res. 101, 29531–29537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, L.G., Mosley-Thompson, E., Davis, M.E. et al. Tropical Glacier and Ice Core Evidence of Climate Change on Annual to Millennial Time Scales. Climatic Change 59, 137–155 (2003). https://doi.org/10.1023/A:1024472313775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024472313775

Keywords

Navigation