Skip to main content
Log in

Multiple forms of microbial enzymes

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Multiple forms of one enzyme occur in a wide variety of microorganisms. Their synthesis is often dependent on culture characteristics such as medium composition, physico-chemical parameters, culture age and the presence of inducing or inhibiting agents. Multiform enzymes increase the capability of the producing organism to adapt to and cope with a wide variety of environmental changes, such that the physiological advantages outweigh the apparent wasteful hyperproduction of multiple forms of one enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abe K, Ito Y, Ohmachi T, Asada Y (1997) Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 61: 1621–1625.

    Google Scholar 

  • Alves AMCR, Euverink GJW, Santos H, Dijkhuizen L (2001) Different physiological roles of ATP-and PPi-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica. J. Bacteriol. 183: 7231–7240.

    Google Scholar 

  • Bartling S, Wegener C, Oslen O (1995) Synergism between Erwinia pectate lyase isoenzymes that depolymerize both pectate and pectin. Microbiology 141: 873–881.

    Google Scholar 

  • Beecher J, Grogan G, Roberts S, Willetts A (1996) Enantioselective oxidations by the diketocamphane monooxygenase isozymes from Pseudomonas putida. Biotechnol. Lett. 18: 571–576.

    Google Scholar 

  • Bonacker LG, Baudner S, Moerschel E, Boecher R, Thauer RK (1994) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 217: 587–595.

    Google Scholar 

  • Briganti F, Pessione E, Giunta C, Mazzoli R, Scozzafava A (2000) Purification and catalytic properties of two catechol-1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistens. J. Protein Chem. 19: 709–716.

    Google Scholar 

  • Burne RA, Penders JEC (1994) Differential localization of the Streptococcus mutans GS-5 fructan hydrolase enzyme, FruA. FEMS Microbiol. Lett. 121: 243–250.

    Google Scholar 

  • Delgado MJ, Fernandez-Lopez M, Bedmar EJ (1998) Soluble and membrane bound nitrate reductase from Bradyrhizobium japonicum bacteroids. Plant Physiol. Biochem. 36: 279–283.

    Google Scholar 

  • Ferguson DJ, Krzycki JA, Grahame DA (1996) Specific roles of methylcobamide: coenzyme M methyltransferase isozymes in metabolism of methanol and methylamines in Methanosarcina barkeri. J. Biol. Chem. 271: 5189–5194.

    Google Scholar 

  • Fernandez-Lopez M, Olivares J, Bedmar EJ (1994) Two differentially regulated nitrate reductases required for nitrate-dependent, microaerobic growth of Bradyrhizobium japonicum. Arch. Microbiol. 162: 310–315.

    Google Scholar 

  • Froehlich KU, Wiedemann M, Lottspeich F, Mecke D (1989) Substitution of a pentalenolactone-sensitive glyceraldehyde-3-phosphate dehydrogenase by a genetically distinct resistant isoform accompanies pentalenolactone production in Streptomyces arenae. J. Bacteriol. 171: 6696–6702.

    Google Scholar 

  • Grahame DA (1989) Different isozymes of methylcobalamin: 2-mercaptoethanesulfonate methyltransferase predominate in methanol-versus acetate-grown Methanosarcina barkeri. J. Biol. Chem. 264: 12890–12894.

    Google Scholar 

  • Han YW (1990) Microbial levan. Adv. Appl. Microbiol. 35: 171–194.

    Google Scholar 

  • Hayashi NR, Arai H, Kodama T, Igarashi Y (1999) The cbbQ genes, located downstream of the form I and form II RubisCO genes, affect the activity of both RubisCOs. Biochem. Biophys. Res. Commun. 265: 177–183.

    Google Scholar 

  • Hazra PP, Sengupta T, Mukhopadhyay A, Ghosh AK, Mukherjee M, Sengupta S (1997) Regulation of protein secretion by mycelial culture of the mushroom Termitomyces clypeatus. FEMS Microbiol. Lett. 154: 239–243.

    Google Scholar 

  • He L, Bickerstaff GF, Paterson A, Buswell JA (1994) Evaluation of catalytic activity and synergism between two xylanase isoenzymes in enzymic hydrolysis of two separate xylans in different states of solubility. Enzyme Microb. Technol. 16: 696–702.

    Google Scholar 

  • Hicks DB (1995) Purification of three catalase isozymes from facultatively alkaliphilic Bacillus firmus OF4. Biochim. Biophys. Acta 1229: 347–355.

    Google Scholar 

  • Hochheimer A, Hedderich R, Thauer RK (1998) The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme. Arch. Microbiol. 170: 389–393.

    Google Scholar 

  • Hunter RL, Markert CL (1957) Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125: 1294–1295.

    Google Scholar 

  • Hussain M, Pastor FIJ, Lampen JO (1987) Cloning and sequencing of the blaZ gene encoding ?-lactamase III, a lipoprotein of Bacillus cereus 569/H. J. Bacteriol. 169: 579–586.

    Google Scholar 

  • Ishii A, Suzuki M, Sahara T, Takada Y, Sasaki S, Fukunaga N (1993) Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J. Bacteriol. 175: 6873–6880.

    Google Scholar 

  • Iwashita K, Nagahara T, Kimura H, Takano M, Shimoi H, Ito K (1999) The bglA gene of Aspergillus kawachii encodes both extracellular and cell wall-bound ?-glucosidases. Appl. Environ. Microbiol. 65: 5546–5553.

    Google Scholar 

  • Iwashita K, Shimoi H, Ito K (2001) Extracellular soluble polysaccharide (ESP) from Aspergillus kawachii improves the stability of extracellular ?-glucosidase (EX-1 and EX-2) and is involved in their localization. J. Biosci. Bioeng. 91: 134–140.

    Google Scholar 

  • Kalcheva EO, Faiziev MM, Shanskaya VO, Maluta SS (1994) Regulation of two aspartokinase isozymes in Streptococcus bovis. Can. J. Microbiol. 40: 224–227.

    Google Scholar 

  • Klotz MG, Anderson AJ (1994) The role of catalase isozymes in the culturability of the root colonizer Pseudomonas putida after exposure to hydrogen peroxide and antibiotics. Can. J. Microbiol. 40: 382–387.

    Google Scholar 

  • Laan H, Smid EJ, de Leij L, Schwander E, Konings WN (1988) Monoclonal antibodies to the cell-wall-associated proteinase of Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 54: 2250–2256.

    Google Scholar 

  • LeClerc GM, Grahame DA (1996) Methylcobamide: coenzyme M methyltransferase isozymes from Methanosarcina barkeri. J. Biol. Chem. 271: 18725–18731.

    Google Scholar 

  • Lee MJ, Lee YC, Kim CH (1997) Intracellular and extracellular forms of alkaline pullulanase from an alkaliphilic Bacillus sp. S-1. Arch. Biochem. Biophys. 337: 308–316.

    Google Scholar 

  • Lotti M, Monticelli S, Montesinos JL, Brocca S, Valero F, Lafuente J (1998) Physiological control on the expression and secretion of Candida rugosa lipase. Chem. Phys. Lipids 93: 143–148.

    Google Scholar 

  • Marsh EN, Chang MDT, Townsend CA (1992) Two isozymes of clavaminate synthase central to clavulanic acid formation: cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry 31: 12648–12657.

    Google Scholar 

  • Mattson P, Meklin S, Korpela T (1990) Analysis of cyclomaltodextrin glucanotransferase isoenzymes by isoelectric focusing in immobilized pH gradients. J. Biochem. Biophys. Meth. 20: 237–246.

    Google Scholar 

  • McMillan GP, Johnston DJ, Perombelon MCM (1992) Purification to homogeneity of extracellular polygalacturonase and isoenzymes of pectate lyase of Erwinia carotovora ssp. atroseptica by column chromatography. J. Appl. Bacteriol. 73: 83–86.

    Google Scholar 

  • Mitamura T, Urabe I, Okada H (1989) Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium. Eur. J. Biochem. 186: 389–394.

    Google Scholar 

  • Mitchell CG, Anderson S, El-Mansi EMT (1995) Purification and characterization of citrate synthase isoenzymes from Pseudomonas aeruginosa. Biochem. J. 309: 507–511.

    Google Scholar 

  • Moss GP (1992) Nomenclature of multiple forms of enzymes. In: Liébecq C, ed. Biochemical Nomenclature and Related Documents, 2nd edn. Seattle: Portland Press.

    Google Scholar 

  • Murakami S, Wang CL, Naito A, Shinke R, Aoki K (1998) Purification and characterization of four catechol-1,2-dioxygenase isozymes from the benzamide-assimilating bacterium Arthrobacter species BA-5-17. Microbiol. Res. 153: 163–171.

    Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch. Microbiol. 173: 325–332.

    Google Scholar 

  • Nagao T, Mitamura T, Wang XH, Negoro S, Yomo T, Urabe I, Okada H (1992) Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM 1030. J. Bacteriol. 174: 5013–5020.

    Google Scholar 

  • Nakai C, Horiike K, Kuramitsu S, Kagamiyama H, Nozaki M (1990) Three isozymes of catechol-1,2-dioxygenase (pyrocatechase), alpha-alpha, alpha-beta, and beta-beta, from Pseudomonas arvilla C-1. J. Biol. Chem. 265: 660–665.

    Google Scholar 

  • Novak J, Kopecky J, Vanek Z (1997) Nitrogen source regulates expression of alanine dehydrogenase isoenzymes in Streptomyces avermitilis in a chemically defined medium. Can. J. Microbiol. 43: 189–193.

    Google Scholar 

  • Novak JS, Tabita FR (1999) Molecular approaches to probe differential NADH activation of phosphoribulokinase isozymes from Rhodobacter sphaeroides. Arch. Biochem. Biophys. 363: 273–282.

    Google Scholar 

  • Pennings JLA, De Wijs JLJ, Keltjens JT, Van Der Drift C (1997) Medium-reductant directed expression of methyl coenzyme M reductase isoenzymes in Methanobacterium thermoautotrophicum (strain DELTA-H). FEBS Lett. 410: 235–237.

    Google Scholar 

  • Pessione E, Giuffrida MG, Mazzoli R, Caposio P, Landolfo S, Conti A, Giunta C, Gribaudo G (2001) The catechol-1,2 dioxygenase system of Acinetobacter radioresistens: isoenzymes, inductors and gene localisation. Biol. Chem. 382: 1253–1261.

    Google Scholar 

  • Pihl TD, Sharma S, Reeve JN (1994) Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N-5-methyltetrahydromethanopterin: coenzyme M methyltransferase in Methanobacterium thermoautotrophicum DELTA-H. J. Bacteriol. 176: 6384–6391.

    Google Scholar 

  • Pugsley AP, Schwartz M (1985) Export and secretion of proteins by bacteria. FEMS Microbiol. Rev. 32: 3–38.

    Google Scholar 

  • Purich DL, Allison RD (2000) Handbook of Biochemical Kinetics. London: Academic Press.

    Google Scholar 

  • Robyt JF, Walseth TF (1979) Production, purification and properties of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr. Res. 68: 95–111.

    Google Scholar 

  • Rossi M, Defez R, Chiurazzi M, Lamberti A, Fuggi A, Iaccarino M (1989) Regulation of glutamine synthetase isoenzymes in Rhizobium leguminosarum biovar viceae. J. Gen. Microbiol. 135: 629–638.

    Google Scholar 

  • Roth J, Bendayan M, Orci L (1978) Immunocytochemical localization of intracellular antigens by the use of protein A-gold complex. J. Histochem. Cytochem. 26: 1074–1081.

    Google Scholar 

  • Schmitz RA, Albracht SPJ, Thauer RK (1992) A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur. J. Biochem. 209: 1013–1018.

    Google Scholar 

  • Sengupta T, Hazra PP, Mukhopadhyay A, Sengupta S (1998) Termitomyces clypeatus controls secretion of extracellular amyloglucosidase by regulating exocytosis of vacuolar enzyme. FEMS Microbiol. Lett. 158: 101–105.

    Google Scholar 

  • Shaw CR (1969) Isozymes: classification, frequency, and significance. Int. Rev. Cytol. 25: 297–332.

    Google Scholar 

  • Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichum candidum lipase by long-chain fatty acids. J. Ferment. Bioeng. 74: 77–80.

    Google Scholar 

  • Silhavy TJ, Benson SA, Emr SD (1983) Mechanisms of protein localization. Microbiol. Rev. 47: 313–344.

    Google Scholar 

  • Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1986) The Microbial World, 5th edn. New Jersey: Prentice-Hall.

    Google Scholar 

  • Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methan-oxidising organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487–492.

    Google Scholar 

  • Suzuki M, Sahara T, Tsuruha JI, Takada Y, Fukunaga N (1995) Differential expression in Escherichia coli of the Vibrio sp. strain ABE-1 icdI and icdII genes encoding structurally different isocitrate dehydrogenase isozymes. J. Bacteriol. 177: 2138–2142.

    Google Scholar 

  • Tamarit J, Cabiscol E, Aguilar J, Ros J (1997) Differential inactivation of alcohol dehydrogenase isoenzymes in Zymomonas mobilis by oxygen. J. Bacteriol. 179: 1102–1104.

    Google Scholar 

  • Tamoi M, Ishikawa T, Takeda T, Shigeoka S (1996) Molecular characterization and resistance to hydrogen peroxide of two fructose-1,6-biphosphatase from Synechococcus PCC 7942. Arch. Biochem. Biophys. 334: 27–36.

    Google Scholar 

  • Vacik DN, Toren ECJ (1982) Separation and measurement of isoenzymes and other proteins by high-performance liquid chromatography. J. Chromatogr. 228: 1–31.

    Google Scholar 

  • Van Den Bergh ERE, Van Der Krooij TAW, Dijkhuizen L, Meijer WG (1995) Fructosebiphosphatase isoenzymes of the chemoautotroph Xanthobacter flavus. J. Bacteriol. 177: 5860–5864.

    Google Scholar 

  • Vorholt JA, Vaupel M, Thauer RK (1997) A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol. Microbiol. 23: 1033–1042.

    Google Scholar 

  • Yeliseev A, Gaertner P, Harms U, Linder D, Thauer RK (1993) Function of methylcobalamin: coenzyme m methyltransferase isoenzyme II in Methanosarcina barkeri. Arch. Microbiol. 159: 530–536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick J. Vandamme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naessens, M., Vandamme, E.J. Multiple forms of microbial enzymes. Biotechnology Letters 25, 1119–1124 (2003). https://doi.org/10.1023/A:1024540902848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024540902848

Navigation