Skip to main content
Log in

Cardiac Tissue Engineering for Replacement Therapy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cell therapy is a new concept to repair diseased organs. For patients with myocardial infarction, heart failure, and congenital heart diseases cell based therapies might represent a potential cure. The field can be subdivided into two principally different approaches: (1) Implantation of isolated cells and (2) implantation of in vitro engineered tissue constructs. This review will focus on the latter approach. Cardiac tissue engineering comprises the fields of material sciences and cell biology. In general, scaffold materials such as gelatin, collagen, alginate, or synthetic polymers and cardiac cells are utilized to reconstitute tissue-like constructs in vitro. Ideally, these constructs display properties of native myocardium such as coherent contractions, low diastolic tension, and syncytial propagation of action potentials. To be applicable for surgical repair of diseased myocardium engineered tissue constructs should have the propensity to integrate and remain contractile in vivo. Size and mechanical properties of engineered constructs are critical for surgical repair of large tissue defects. Successful application of tissue engineering in men will depend on the utilization of an autologous or non-immunogeneic cell source and scaffold material to avoid life long immunosuppression. This review will give an overview of recent approaches in cardiac tissue engineering and its first applications in vivo. We will discuss materials and cell sources for cardiac tissue engineering. Further, principle obstacles will be addressed. Cardiac tissue engineering for replacement therapy has an intriguing perspective, but is in its early days. Its true value remains to be thoroughly evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miniati DN, Robbins RC. Heart transplantation: A thirtyyear perspective. Annu Rev Med 2002;53:189-205.

    PubMed  Google Scholar 

  2. Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation 2000;101:E182-187.

    PubMed  Google Scholar 

  3. Koh GY, Klug MG, Soonpaa MH, Field LJ. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 1993;92:1548-1554.

    PubMed  Google Scholar 

  4. Koh GY, Soonpaa MH, Klug MG, Field LJ. Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. Am J Physiol 1993;264:H1727-1733.

    PubMed  Google Scholar 

  5. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 1994;264:98-101.

    Google Scholar 

  6. Li RK, Mickle DA, Weisel RD, Zhang J, Mohabeer MK. In vivo survival and function of transplanted rat cardiomyocytes. Circ Res 1996;78:283-288.

    PubMed  Google Scholar 

  7. Scorsin M, Hagege AA, Marotte F, Mirochnik N, Copin H, Barnoux M, Sabri A, Samuel JL, Rappaport L, Menasche P. Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 1997;96:II-188-193.

    Google Scholar 

  8. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929- 933.

    PubMed  Google Scholar 

  9. Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts: A study in normal and injured rat hearts. Circulation 1999;100:193-202.

    PubMed  Google Scholar 

  10. Sakai T, Li RK, Weisel RD, Mickle DA, Jia ZQ, Tomita S, Kim EJ, Yau TM. Fetal cell transplantation: A comparison of three cell types. J Thorac Cardiovasc Surg 1999;118:715-724.

    PubMed  Google Scholar 

  11. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100:II247-256.

    PubMed  Google Scholar 

  12. Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A, Frati G, Cusella De Angelis MG, Gioglio L, Amuchastegui S, Adorini L, Naldini L, Vescovi A, Dejana E, Cossu G. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proc Natl Acad Sci USA 2001;98:10733-10738.

    PubMed  Google Scholar 

  13. Etzion S, Battler A, Barbash IM, Cagnano E, Zarin P, Granot Y, Kedes LH, Kloner RA, Leor J. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 2001;33:1321-1330.

    Google Scholar 

  14. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP. Myoblast transplantation for heart failure. Lancet 2001;357:279- 280.

    PubMed  Google Scholar 

  15. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-705.

    PubMed  Google Scholar 

  16. Müller-Ehmsen J, Peterson KL, Kedes L, Whittaker P, Dow JS, Long TI, Laird PW, Kloner RA. Rebuilding a damaged heart: Long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 2002;105:1720-1726.

    PubMed  Google Scholar 

  17. Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 2002;34:107-116.

    PubMed  Google Scholar 

  18. Roell W, Lu ZJ, Bloch W, Siedner S, Tiemann K, Xia Y, Stoecker E, Fleischmann M, Bohlen H, Stehle R, Kolossov E, Brem G, Addicks K, Pfitzer G, Welz A, Hescheler J, Fleischmann BK. Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 2002;105:2435- 2441.

    PubMed  Google Scholar 

  19. Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. Faseb J 1997;11:683-694.

    PubMed  Google Scholar 

  20. Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR. Cardiac organogenesis in vitro: Reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells.Tissue Eng 1999;5:103-118.

    PubMed  Google Scholar 

  21. Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE. Cardiac muscle tissue engineering: Toward an in vitro model for electrophysiological studies.Am J Physiol 1999;277:H433- 444.

    PubMed  Google Scholar 

  22. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999;64:580-589.

    PubMed  Google Scholar 

  23. Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation 1999;100:II63-69.

    PubMed  Google Scholar 

  24. Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. Faseb J 2000;14:669-679.

    PubMed  Google Scholar 

  25. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 2000;102:III56-61.

    PubMed  Google Scholar 

  26. Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, Jia ZQ. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg 2000;119:368-375.

    PubMed  Google Scholar 

  27. Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 2000;68:106-114.

    PubMed  Google Scholar 

  28. Eschenhagen T, Didie M, Heubach J, Ravens U, Zimmermann WH. Cardiac tissue engineering. Transpl Immunol 2002;9:315-321.

    PubMed  Google Scholar 

  29. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: Artificial myocardial tissue. J Thorac Cardiovasc Surg 2002;124:63-69.

    PubMed  Google Scholar 

  30. Krupnick AS, Kreisel D, Engels FH, Szeto WY, Plappert T, Popma SH, Flake AW, Rosengard BR. A novel small animal model of left ventricular tissue engineering. J Heart Lung Transplant 2002;21:233-243.

    PubMed  Google Scholar 

  31. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 2002;90:e40.

    PubMed  Google Scholar 

  32. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, M¨ unzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res 2002;90:223-230.

    PubMed  Google Scholar 

  33. Eschenhagen T, Didie M, Münzel F, Schubert P, Schneiderbanger K, Zimmermann WH. 3D engineered heart tissue for tissue replacement therapy. Basic Res Cardiol 2002;97:I146-152.

    PubMed  Google Scholar 

  34. Zimmermann WH, Didie M, Wasmeier G, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 2002;106:I151-157.

    PubMed  Google Scholar 

  35. Bader D, Oberpriller JO. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J Morphol 1978;155:349-357.

    PubMed  Google Scholar 

  36. Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 1996;94:II332-336.

    PubMed  Google Scholar 

  37. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-926.

    PubMed  Google Scholar 

  38. Vacanti JP, Langer R, Upton J, Marler JJ. Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 1998;33:165-182.

    PubMed  Google Scholar 

  39. Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 2000;102:III44-49.

    PubMed  Google Scholar 

  40. Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, Kim BS, Schoen FJ, Vacanti JP, Mayer JE, Jr. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 2000;102:III22-29.

    PubMed  Google Scholar 

  41. Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue. Circulation 2000;102:III50-55.

    PubMed  Google Scholar 

  42. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 2002;23:475-485.

    PubMed  Google Scholar 

  43. Zimmermann WH, Schneiderbanger K, Schubert P, Didi´e M, El-Armouche A, Eschenhagen T. Engineering of an organoid cardiac tissue equivalent in vitro. Circulation 2001;104:II-129.

    Google Scholar 

  44. Korecky B, Hai CM, Rakusan K. Functional capillary density in normal and transplanted rat hearts. Can J Physiol Pharmacol 1982;60:23-32.

    PubMed  Google Scholar 

  45. Nag AC, Zak R. Dissociation of adult mammalian heart into single cell suspension: An ultrastructural study. J Anat 1979;129:541-559.

    PubMed  Google Scholar 

  46. El-Armouche A, Rau T, Zolk O, Ditz D, Pamminger T, Zimmermann WH, Jäckel E, Harding SE, Boknik P, Neumann J, Eschenhagen T. Evidence for protein phosphatase inhibitor-1 playing an amplifier role in betaadrenergic signaling in cardiac myocytes. FASEB J 2003;17:437-439.

    PubMed  Google Scholar 

  47. Mikos AG, McIntire LV, Anderson JM, Babensee JE. Host response to tissue engineered devices. Adv Drug Deliv Rev 1998;33:111-139.

    PubMed  Google Scholar 

  48. Chaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM. Biomaterials and scaffolds in reparative medicine. Ann NY Acad Sci 2002;961:96-105.

    PubMed  Google Scholar 

  49. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014-1017.

    PubMed  Google Scholar 

  50. Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 1997;38:105-114.

    PubMed  Google Scholar 

  51. Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Fisher J, Ingham E. Tissue engineering of cardiac valve prostheses I: Development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 2002;11:457-462.

    PubMed  Google Scholar 

  52. Mellors LJ, Barclay CJ. The energetics of rat papillary muscles undergoing realistic strain patterns. J Exp Biol 2001;204:3765-3777.

    PubMed  Google Scholar 

  53. Holubarsch C, Ruf T, Goldstein DJ, Ashton RC, Nickl W, Pieske B, Pioch K, Ludemann J, Wiesner S, Hasenfuss G, Posival H, Just H, Burkhoff D. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels. Circulation 1996;94:683-689.

    PubMed  Google Scholar 

  54. Weil J, Eschenhagen T, Hirt S, Magnussen O, Mittmann C, Remmers U, Scholz H. Preserved Frank-Starling mechanism in human end stage heart failure. Cardiovasc Res 1998;37:541-548.

    PubMed  Google Scholar 

  55. Kofidis T, Akhyari P, Wachsmann B, Boublik J, Mueller-Stahl K, Leyh R, Fischer S, Haverich A. A novel bioarti-ficial myocardial tissue and its prospective use in cardiac surgery. Eur J Cardiothorac Surg 2002;22:238-243.

    PubMed  Google Scholar 

  56. McDevitt TC, Angello JC, Whitney ML, Reinecke H, Hauschka SD, Murry CE, Stayton PS. In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J Biomed Mater Res 2002;60:472- 479.

    PubMed  Google Scholar 

  57. Long CS, Henrich CJ, Simpson PC. A growth factor for cardiac myocytes is produced by cardiac nonmyocytes. Cell Regul 1991;2:1081-1095.

    PubMed  Google Scholar 

  58. Shah AM, Grocott-Mason RM, Pepper CB, Mebazaa A, Henderson AH, Lewis MJ, Paulus WJ. The cardiac endothelium: Cardioactive mediators. Prog Cardiovasc Dis 1996;39:263-284.

    PubMed  Google Scholar 

  59. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fi-broblasts. Cardiovasc Res 1998;40:352-363.

    PubMed  Google Scholar 

  60. Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002;34:241-249.

    PubMed  Google Scholar 

  61. Suzuki K, Brand NJ, Allen S, Khan MA, Farrell AO, Murtuza B, Oakley RE, Yacoub MH. Overexpression of connexin 43 in skeletal myoblasts: Relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 2001;122:759-766.

    PubMed  Google Scholar 

  62. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic Cardiac Tissue Engineering 269 stem cell lines derived from human blastocysts. Science 1998;282:1145-1147.

    PubMed  Google Scholar 

  63. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: Entity or function? Cell 2001;105:829- 841.

    PubMed  Google Scholar 

  64. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407-414.

    PubMed  Google Scholar 

  65. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49.

    PubMed  Google Scholar 

  66. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985;87:27-45.

    PubMed  Google Scholar 

  67. Wobus AM, Wallukat G, Hescheler J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 1991;48:173-182.

    PubMed  Google Scholar 

  68. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. From the cover: Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000;97:11307- 11312.

    PubMed  Google Scholar 

  69. Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 1996;98:216-224.

    PubMed  Google Scholar 

  70. Bodmer R, Venkatesh TV. Heart development in Drosophila and vertebrates: Conservation of molecular mechanisms. Dev Genet 1998;22:181-186.

    PubMed  Google Scholar 

  71. Müller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G, Müller OJ, Schlenke P, Frese S, Wobus AM, Hescheler J, Katus HA, Franz WM. Selection of ventricular-like cardiomyocytes from ES cells in vitro. Faseb J 2000;14:2540-2548.

    PubMed  Google Scholar 

  72. Jamali M, Rogerson PJ, Wilton S, Skerjanc IS. Nkx2-5 activity is essential for cardiomyogenesis. J Biol Chem 2001;276:42252-42258.

    PubMed  Google Scholar 

  73. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001;105:851-862.

    PubMed  Google Scholar 

  74. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 2002;91:189-201.

    PubMed  Google Scholar 

  75. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-1402.

    PubMed  Google Scholar 

  76. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Chimerism of the transplanted heart. N Engl J Med 2002;346:5-15.

    PubMed  Google Scholar 

  77. Glaser R, Lu MM, Narula N, Epstein JA. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 2002;106:17-19.

    PubMed  Google Scholar 

  78. Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 2002;90:634- 640.

    PubMed  Google Scholar 

  79. Müller P, Pfeiffer P, Koglin J, Schafers HJ, Seeland U, Janzen I, Urbschat S, Böhm M. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 2002;106:31-35.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram-Hubertus Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, WH., Eschenhagen, T. Cardiac Tissue Engineering for Replacement Therapy. Heart Fail Rev 8, 259–269 (2003). https://doi.org/10.1023/A:1024725818835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024725818835

Navigation