Skip to main content
Log in

Binding of phosphate in sediment accumulation areas of the eastern Gulf of Finland, Baltic Sea

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The relationships between P and components binding P were studied by analysing the concentrations of N, P, Fe, Mn, Ca and Al in sediments and pore water along the estuarine transect of the River Neva in August 1995. The high sediment organic matter concentration resulted in low surface redox potential and high pore-water o-P concentration, whereas the abundance of amphipods resulted in high surface redox potentials and low pore-water o-P concentration. However, despite the variation in sediment organic matter and the abundance of amphipods, very reduced conditions and slightly variable concentrations of Tot-P (0.7–1.1 mg g−1 DW) were observed in the 10–15 cm sediment depth along the estuarine gradient, indicating that the pools of mobile P were largely depleted within the depth of 0–15 cm. Multiple regression analysis demonstrated that organic matter and Tot-Fe concentration of the sediment were closely related to the variation in Tot-P concentration of the sediments (r 2 = 0.817, n=32). In addition, the high total Fe:P ratio suggested that there is enough Fe to bind P in sediments along the estuarine gradient. However, low Fediss concentrations in the pore water of reduced sediment (redox-potential <−50 mV) indicated efficient precipitation of FeS (FeS and FeS2), incapable to efficiently bind P. Consequently, the low Fediss:o-P ratio (< 1) recorded in pore water in late summer implied that Fe3+ oxides formed by diffusing Fediss in the oxic zone of the sediments were insufficient to bind the diffusing o-P completely. The measured high o-P concentrations in the near-bottom water are consistent with this conclusion. However, there was enough Fediss in pore water to form Fe3+ oxides to bind upwards diffusing P in the oxic sediment layer of the innermost Neva estuary and the areas bioturbated by abundant amphipods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersin, A.-B. & H. Sandler, 1991. Macrobenthic fauna and oxygen deficiency in the Gulf of Finland. Memoranda Societatis pro Fauna et Flora Fennica 67: 3-10.

    Google Scholar 

  • Campbell, P. & T. Torgersen, 1980. Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Can. J. Fish. aquat. Sci. 37: 1303-1313.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1991a. A cross system study of phosphorus release from lake sediments. In Cole, J. J., G. Lovett & S. Findlay (eds), Comparative Analysis of Ecosystems; Patterns; Mechanisms, and Theories. Springer-Verlag, New York, NY: 241-258.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1991b. Phosphorus release from anoxic sediments: lakes that break the rules. Verh. int. Ver. für Theor. Angewand. Limnol. 24: 2985-2988.

    Google Scholar 

  • Carman, R. & F. Wulff, 1989. Adsorption capacity of phophorus in Baltic Sea sediments. Estuar. coast. shelf Sci. 29: 447-456.

    Google Scholar 

  • Conley, J., A. Stockenberg, R. Carman, R.W. Johnstone, L. Rahm & F. Wulff, 1997. Sediment fluxes along a eutrophication gradient in the Gulf of Finland, Baltic Sea. Estuar. coast. shelf Sci. 45: 591-598.

    Google Scholar 

  • Deinema, M. H., M. Van Loosdrecht & A. Scholten, 1985. Some physiological characteristics of Acinetobacter spp. Accumulating large amounts of phosphate. Wat. Sci. Technol. 17: 119-125.

    Google Scholar 

  • Davison, W., 1993. Iron and manganese in lakes. Earth-Science Rev. 34: 119-163.

    Google Scholar 

  • Ehlin, U., 1981. Hydrology of the Baltic Sea. In Voipio, A. (ed.), Baltic Sea. Elsevier, Amsterdam: 123-134.

    Google Scholar 

  • Einsele, W., 1938. Ñber chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361-387.

    Google Scholar 

  • Ellis-Evans, J. C. & E. C. G. Lemon, 1989. Some aspects of iron cycling in maritime Antarctic lakes. Hydrobiologia 172: 149-164.

    Google Scholar 

  • Enell, M. & S. Löfgren, 1988. Phosphorus in interstitial water: methods and dynamics. Hydrobiologia 170: 103-132.

    Google Scholar 

  • EPA 3051. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils: 7 pp.

  • Gallagher, J. B., 1985. The influence of iron and manganese on nutrient cycling in shallow freshwater Antarctic lakes. In Siegfried, W. R., P. R. Condy & R. M. Laws (eds), Antarctic Nutrient Cycles and Food Webs. Springer-Verlag, Berlin: 234-237.

    Google Scholar 

  • Gran, V. & H. Pitkänen, 1999. Denitrification in estuarine sediments in the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 393: 107-115.

    Google Scholar 

  • Golterman, H. L., 2001. Phosphate release from anoxic sediments or 'What did Mortimer really write?' Hydrobiologia 450: 99-106.

    Google Scholar 

  • Gunnars, A. & S. Blomqvist, 1997. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions - an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37: 203-226.

    Google Scholar 

  • Gunnars, A., S. Blomqvist, P. Johansson, & C. Andersson, 2002. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta 66: 745-758.

    Google Scholar 

  • Hansen, K., S. Mouridsen & E. Kristensen, 1998. The impact of Chironomus plumosus larvae on organic matter decay and nutrient (N, P) exchange in a shallow eutrophic lake sediment following a phytoplankton sedimentation. Hydrobiologia 364: 65-74.

    Google Scholar 

  • Henriksen, K., M. B. Rasmussen & A. Jensen, 1983. Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying water. Ecol. Bull. 35: 193-205.

    Google Scholar 

  • Ingri, J., R. Löfvendahl & K. Boström, 1991. Chemistry of suspended particles in the southern Baltic Sea. Mar. Chem. 32: 73-87.

    Google Scholar 

  • Jensen, H. S., P. Kristensen, E. Jeppesen & A. Skytthe, 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236: 731-743.

    Google Scholar 

  • Jensen, H. S., P. B. Mortensen, F. Ø. Andersen, E. Rasmussen & A. Jensen, 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 40: 908-917.

    Google Scholar 

  • Kankaanpää, H., 1997. Sedimentation, Distribution, Sources and Properties of Organic Halogen Material in the Gulf of Finland. Monographs of the Boreal Environment Research 6: 63 pp.

  • Kansanen, P. H., T. Jaakkola, S. Kulmala & R. Suutarinen, 1991. Sedimentation and distribution of gamma emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland after the Chernobyl accident. Hydrobiologia 222: 121-140.

    Google Scholar 

  • Kauppila, P., G. Hällfors, P. Kangas, P. Kokkonen & S. Basova, 1995. Late summer phytoplankton species composition and biomasses in the eastern Gulf of Finland. Ophelia 42: 179-191.

    Google Scholar 

  • Koop, K., W. R. Boynton, F. Wulff & R. Carman, 1990. Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea. Mar. Ecol. Prog. Ser. 6: 65-77.

    Google Scholar 

  • Koroleff, F., 1983. In Grasshoff, K., M. Ehrhardt & K. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Weinheim.

    Google Scholar 

  • Kristensen, E. & T. H. Blackburn, 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. J. mar. Res. 45: 231-257.

    Google Scholar 

  • Lehtoranta, J., 1998. Net sedimentation and sediment-water nutrient fluxes in the eastern Gulf of Finland (Baltic Sea). Vie Milieu 48: 341-352.

    Google Scholar 

  • Lehtoranta, J., H. Pitkänen & O. Sandman, 1997. Sediment accumulation of nutrients (N,P) in the eastern Gulf of Finland (Baltic Sea). Wat. Air Soil Pollut. 99: 477-486.

    Google Scholar 

  • Leivuori, M., 2000. Distribution and accumulation of metals in sediments of the northern Baltic Sea. Ph.D. thesis. Contributions of the Finnish Institute of Marine Research No.2. Hakapaino oy, Helsinki 2000.

    Google Scholar 

  • Lindström, M., 1992. The Migration Behaviour of the Amphipod Pontoporeia affinis Lindström. Walter and Andrée de Nottbeck Foundation Scientific Reports 7, Helsinki, Yliopistopaino: 18 pp.

    Google Scholar 

  • Lovley, D. R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287.

    Google Scholar 

  • Mayer, L. M., F. P. Liotta & S. A. Norton, 1982. Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine. Wat. Res. 16: 1189-1196.

    Google Scholar 

  • McLaughlin, J. R., J. C. Ryden & J. K. Syers, 1981. Sorption of inorganic phosphate by iron and aluminium-containing components. J. Soil Sci. 32: 365-377.

    Google Scholar 

  • Pitkänen, H., 1991. Nutrient dynamics and trophic conditions in the eastern Gulf of Finland: the regulatory role of the Neva estuary. Aqua Fenn. 21: 105-115.

    Google Scholar 

  • Pitkänen, H., 1994. Eutrophication of the Finnish coastal waters: origin, fate and effects of riverine nutrient fluxes. Publications of the Water and Environment Research Institute, National Board of Waters and the Environment, Helsinki, Finland. No. 18.

    Google Scholar 

  • Pitkänen, H., J. Lehtoranta & A. Räike, 2001. Internal nutrient fluxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea. Ambio 30: 195-201.

    Google Scholar 

  • Pitkänen, H. & T. Tamminen, 1995. Nitrogen and phosphorus as production limiting factors in the estuarine waters of the eastern Gulf of Finland. Mar. Ecol. Prog. Ser. 129: 283-294.

    Google Scholar 

  • Pitkänen, H., T. Tamminen, P. Kangas, T. Huttula, K. Kivi, H. Kuosa, J. Sarkkula, K. Eloheimo, P. Kauppila & B. Skakalsky, 1993. Late summer trophic conditions in the North-east Gulf of Finland and the River Neva Estuary, Baltic Sea. Estuar. coast. shelf Sci. 37: 453-474.

    Google Scholar 

  • Roden, E. E. & J. W. Edmonds, 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch. Hydrobiol. 139: 347-378.

    Google Scholar 

  • Ruttenberg, K. C. & R. A. Berner, 1992. Authigenic apatite formation and burial in sediments from non-upwelling continental margin environments. Geochim. Cosmochim. Acta 57: 991-1007.

    Google Scholar 

  • SAS Institute Inc., 1989. SAS STAT® User's Guide, Version 6, 4th Edition, Vol.1 Cary, NC: 943 pp.

    Google Scholar 

  • SAS Institute Inc., 1990. SAS® Procedures Guide, Version 6, 3rdEdition, Cary, NC: 705 pp.

    Google Scholar 

  • Shaffer, G., 1986. Phosphate pumps and shuttles in the Black Sea. Nature 321: 515-517.

    Google Scholar 

  • Starck, B. & K. Haapala, 1984. The analysing of nitrogen in waste water, extension study. National Board of Waters and the Environment, Finland. Vesihallituksen monistesarja No. 257, Helsinki, Finland. (mimeographed, in Finnish).

    Google Scholar 

  • Sundby, B., C. Cobeil, N. Silverberg & A. Mucci, 1992. The phosphorus cycle in coastal marine sediments. Limnol. Oceanogr. 37: 1129-1145.

    Google Scholar 

  • Thamdrup, B., H. Fossing & B. B. Jørgensen, 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58: 5115-5129.

    Google Scholar 

  • Vallius, H. 1999a. Recent Sediments of the Gulf of Finland: an Environment Affected by the Accumulation of Heavy Metals. Academic dissertation. Åbo Akademi University, Department of Geology and Mineralogy: 45 pp.

    Google Scholar 

  • Vallius, H., 1999b. Heavy metal deposition and variation in sedimentation rate within a sedimentary basin in the central Gulf of Finland. Chemosphere 38: 1959-1972.

    Google Scholar 

  • Yamada, H. & M. Kayama, 1987. Distribution and dissolution of several forms of phosphorus in coastal marine sediments. Oceanol. Acta. 10: 311-321.

    Google Scholar 

  • Zink-Nielsen, I., 1975. Intercalibration of Chemical Sediment Analyses. Nordfors Miljövårdssekretariet, Publication no. 6: 1-19 (in Swedish).

  • Ærteberg, G. et al. 2001. Eutrophication in Europe's coastal waters. European Environment Agency, Topic report no. 7: 115 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehtoranta, J., Pitkänen, H. Binding of phosphate in sediment accumulation areas of the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 492, 55–67 (2003). https://doi.org/10.1023/A:1024869929510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024869929510

Navigation