Skip to main content
Log in

To the Low-Temperature Passivity of Iron at the Gaseous Oxidation

  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

The low-temperature passivation of the oxide growth on iron is studied with the use of digital ellipsometry at a temperature of 300°C and an oxygen pressure from 10–3 to 1 mmHg. The maximum increment in the oxide thickness as a function of the oxygen pressure P a–p is observed in an hour of exposure, which indicates the active–passive transition. This passivity of iron and other metals can be caused by the multilayer and multiphase structure of the oxide film formed. As the oxygen pressure is increased, an external protective hematite layer appears on iron, and the inner quickly growing magnetite layer has no time to reach its limiting thickness. Shortening of the period of a rapid growth of magnetite, which is observed upon the increase in the oxygen pressure at the same exposure, results in the maximum of the summary thickness of the layer at a certain pressure P a–p. Hematite over the magnetite layer is usually formed as laterally spreading islets, the coalescence of which sharply decelerates the oxidation. In the time–pressure–oxide thickness plot, the areas of the low-temperature passivation of iron can be distinguished in wide ranges of temperature and pressure. The electrophysical treatment in the range of the active–passive transition sharply intensifies the oxidation of iron-based alloys and leads to the formation of layers with a substantial thickness and protective ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kubaschewski, O. and Hopkins, B., Oxidation of Metals and Alloys, London: Butterworths, 1962.

  2. Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.

  3. Hauffe, K., Reactionen in und an Festen Stoffen (Reactions in and on Solids), Berlin: Springer, 1955.

    Google Scholar 

  4. Oxydation des Metaux (Oxidation of Metals), Benard, J., Ed., Paris: Cauthier-Villars, 1964.

  5. Lustman, B. and Mehl, R., Trans. AIME, 1941, vol. 143, p. 246.

    Google Scholar 

  6. Hussey, R.J., Mitchell, D.F., and Graham, M.J., Werkst. Korros., 1987, vol. 38, no. 10, p. 575.

    Google Scholar 

  7. Kotenev, V.A., Zashch. Met., 1998, vol. 34, no. 6, p. 592.

    Google Scholar 

  8. Kotenev, V.A., Zimina, T.Yu., Andreeva, N.P., and Zimin, P.A., Fizika Khimiya Obrab. Met., 1999, no. 4, p. 45.

  9. Zhuk, N.P., Kurs teorii korrozii i zashchity metallov (Theoretical Course of Corrosion and Metal Protection), Moscow: Metallurgiya, 1976.

    Google Scholar 

  10. Turkdogan, E.F., Griweson, P., and Darken, L., J. Phys. Chem., 1963, vol. 67, p. 1647.

    Google Scholar 

  11. Wagner, K., Corros. Sci., 1965, vol. 5, no. 11, p. 751.

    Google Scholar 

  12. Kaesche, H., Die Korrosion der Metalle (Corrosion of Metals), Berlin: Springer, 1979.

  13. Mrowec, S. and Werber, T., Nowoczesne materialy zaroodporne (Modern Heat-Resistant Materials), Warszawa: Wydamnictwa Naukowo-Techniczne, 1982.

    Google Scholar 

  14. Fehlner, F.P., Low-Temperature Oxidation. The Role of Vitreous Oxides, New York: Wiley, 1986.

  15. Hoar, T.R. and Price, L.E., Trans. Faraday Soc., 1938, vol. 34, p. 867.

    Google Scholar 

  16. Jost, W., Diffusion in Solids, Liquids, and Gases, New York: Academic Press, 1952.

    Google Scholar 

  17. Hussey, R.J. and Cohen, M., Corros. Sci., 1971, vol. 11, no. 10, p. 699.

    Google Scholar 

  18. Hussey, R.J. and Cohen, M., Corros. Sci., 1971, vol. 11, no. 10, p. 713.

    Google Scholar 

  19. Arkharov, V.I., Okislenie metallov (Oxidation of Metals), Moscow: Metallurgizdat, 1945.

    Google Scholar 

  20. Schwenk, W. and Rahmel, A., Oxid. Met., 1986, vol. 25, nos. 5-6, p. 293.

    Google Scholar 

  21. Khimushin, F.F., Nerzhaveyushchie stali (Stainless Steels), Moscow: Metallurgiya, 1967.

    Google Scholar 

  22. Evans, U.R., The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, London: Edward Arnold, 1960.

    Google Scholar 

  23. Boggs, W.E., Kachik, R.H., and Pellissier, G.E., J. Electrochem. Soc., 1965, vol. 112, no. 6, p. 539.

    Google Scholar 

  24. Graham, M.J. and Cohen, M., J. Electrochem. Soc., 1969, vol. 116, no. 10, p. 1430.

    Google Scholar 

  25. Jensen, C.P., Mitchell, D.F., and Graham, M.J., Corros. Sci., 1982, vol. 22, no. 12, p. 1125.

    Google Scholar 

  26. Kotenev, V.A., Cand. Sci. (Chem.) Dissertation, Moscow: IFKh AN SSSR, 1987.

  27. Kotenev, V.A., Zashch. Met., 1998, vol. 34, no. 6, p. 592.

    Google Scholar 

  28. Kotenev, V.A., Proc. 189th Meeting of the Electrochemical Society, Los Angeles, California: The Electrochem. Soc. Inc., 1996, vol. 96-1, p. 117.

    Google Scholar 

  29. Oxydation des Metaux (Oxidation of Metals), Benard, J., Ed., Paris: Cauthier-Villars, 1962, vol. 1.

  30. Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, Amsterdam: North-Holland Publishing Co., 1977.

    Google Scholar 

  31. Kotenev, V.A., Zashch. Met., 2003, vol. 39, no. 3, p. 260.

    Google Scholar 

  32. Archer, R.J., Ellipsometry, Chicago: Gaertner Scientific Corp., 1968.

    Google Scholar 

  33. Kotenev, V.A., Doctoral (Chem.) Dissertation, Moscow: IFKh RAN, 1998.

    Google Scholar 

  34. Osnovy ellipsometrii (Basics of Ellipsometry), Rzhanov, A.V., Ed., Novosibirsk: Nauka, Sib. Otdel., 1979.

  35. Tanaka, T., Jap. J. Appl. Phys., 1979, vol. 18, no. 6, p. 1043.

    Google Scholar 

  36. Max, J., Methodes et techniques de traitement du signal et applications aux mesures physiques (Methods and Techniques of Treating Signals and Applications to Physical Measurements), Paris: Masson, 1981.

    Google Scholar 

  37. Kubaschewski, O., Iron Binary Phase Diagrams, Berlin: Springer, 1982.

  38. Birks, N. and Meier, G.H., Introduction to High Temperature Oxidation of Metals, Pittsburgh: Edward Arnold, 1983.

    Google Scholar 

  39. Howe, C.I., McEnaney, B., and Scott, V.D., Corros. Sci., 1985, vol. 25, no. 3, p. 195.

    Google Scholar 

  40. Belen'kii, V.Z., Geometriko-veroyatnostnye modeli kristallizatsii. Fenomenologicheskii podkhod (Geometrical-Probabilistic Crystallization Models. Phenomenological Approach), Moscow: Nauka, 1980.

    Google Scholar 

  41. Kofstad, P., High Temperature Oxidation of Metals, New York: Wiley, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotenev, V.A. To the Low-Temperature Passivity of Iron at the Gaseous Oxidation. Protection of Metals 39, 301–310 (2003). https://doi.org/10.1023/A:1024926927108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024926927108

Keywords

Navigation