Skip to main content
Log in

Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The discovery by Louis N. M. Duysens in the 1950s that illumination of photosynthetic purple bacteria can cause oxidation of either a bacteriochlorophyll complex (P) or a cytochrome was followed by an extended period of uncertainty as to which of these processes was the `primary' photochemical reaction. Similar questions arose later about the roles of bacteriopheophytin (BPh) and quinones as the initial electron acceptor. This is a personal account of kinetic measurements that showed that electron transfer from P to BPh occurs in the initial step, and that the oxidized bacteriochlorophyll complex (P+) then oxidizes the cytochrome while the reduced BPh transfers an electron to a quinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alden RG, Parson WW, Chu ZT and Warshel (1995) Calculations of electrostatic energies in photosynthetic reaction centers. J Am Chem Soc 117: 12284–12298

    CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R26: the cofactors. Proc Natl Acad Sci USA 84: 5730–5734

    PubMed  CAS  Google Scholar 

  • Arlt T, Dohse B, Schmidt S, Wachtveitl J, Laussermaier E, Zinth W and Oesterhelt D (1996a) Biochemistry 35: 9235–9244

    PubMed  CAS  Google Scholar 

  • Arlt T, Bibikova M, Penzkofer H, Oesterhelt D and Zinth W(1996b) Strong acceleration of primary photosynthetic electron transfer in a mutated reaction center of Rhodopseudomonas viridis. J Phys Chem 100: 12060–12065

    CAS  Google Scholar 

  • Arnold W and Clayton RK (1960) The first step in photosynthesis: evidence for its electronic nature. Proc Natl Acad Sci USA 46: 769–760

    PubMed  CAS  Google Scholar 

  • Beugeling T and Duysens LNM (1966) P890 and cytochrome c in Chromatium. In: Thomas JB and Goedheer JC (eds) Currents in Photosynthesis, pp 59–65. Donker, Rotterdam, The Netherlands

    Google Scholar 

  • Bixon M and Jortner J (1999) Electron transfer -from isolated molecules to biomolecules. Adv Chem Phys 106: 35–202

    CAS  Google Scholar 

  • Blankenship RE, Schaafsma TJ and Parson WW (1977) Magnetic field effects on radical-pair intermediates in bacterial photosynthesis. Biochim Biophys Acta 461: 297–305

    PubMed  CAS  Google Scholar 

  • Boxer SG, Chidsey ED and Roelofs MG (1983) Magnetic field effects on reaction yields in the solid state: an example from photosynthetic reaction centers. Ann Rev Phys Chem 34: 389–417

    CAS  Google Scholar 

  • Bylina EJ, Kirmaier C, McDowell L, Holten D and Youvan DC (1988) Influence of an amino acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex. Nature 336: 182–184

    CAS  Google Scholar 

  • Case GD, Parson WW and Thornber JP (1970) Photooxidations of cytochromes in reaction center preparations from Chromatium and Rhodopseudomonas viridis. Biochim Biophys Acta 223: 122–128

    PubMed  CAS  Google Scholar 

  • Chance B and DeVault D (1964) On the kinetics and quantum efficiency of the chlorophyll-cytochrome reaction. Ber Bunsenges Phys Chem 68: 722–726

    CAS  Google Scholar 

  • Chance B and Nishimura M (1960) On the mechanism of chlorophyll-cytochrome interaction: the temperature insensitivity of light-induced cytochrome oxidation in Chromatium. Proc Natl Acad Sci USA 46: 19–25

    PubMed  CAS  Google Scholar 

  • Chance B and Smith L (1955) Respiratory pigments of Rhodospirillum rubrum. Nature 175: 803–809

    PubMed  CAS  Google Scholar 

  • Chang CH, El-Kabbani O, Tiede D, Norris J and Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochem 30: 5352–5360

    CAS  Google Scholar 

  • Clayton RK (1962a) Primary reactions in bacterial photosynthesis. I. The nature of light-induced absorbancy changes in chromatophores; evidence for a special bacteriochlorophyll component. Photochem Photobiol 1: 201–210

    CAS  Google Scholar 

  • Clayton RK (1962b) Primary reactions in bacterial photosynthesis. III. Reactions of carotenoids and cytochromes in illuminated bacterial chromatophores. Photochem Photobiol 1: 313–323

    CAS  Google Scholar 

  • Clayton RK (1963) Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim Biophys Acta 75: 312–323

    PubMed  CAS  Google Scholar 

  • Clayton RK (1966) Spectroscopic analysis of bacteriochlorophyll components in vitro. Photochem Photobiol 5: 669–677

    CAS  Google Scholar 

  • Clayton RK (2002) Research on photosynthetic reaction centers from 1932–1987. Photosynth Res 73: 63–71

    PubMed  CAS  Google Scholar 

  • Clayton RK and Straley SC (1970) An optical absorbance change that could be due to reduction of the primary photochemical electron acceptor in photosynthetic reaction centers. Biochem Biophys Res Commun 39: 1114–1119

    PubMed  CAS  Google Scholar 

  • Clayton RK, Sistrom WR and Zaugg WS (1965) The role of a reaction center in photochemical activities of bacterial chromatophores. Biochim Biophys Acta 102: 341–348

    PubMed  CAS  Google Scholar 

  • Clayton RK, Fleming H and Szuts EZ (1972) Photochemical electron transport in photosynthetic reaction centers from Rhodopseudomonas sphaeroides. II. Interaction with external electron donors and acceptors and a reevaluation of some spectroscopic data. Biophys J 12: 46–63

    PubMed  CAS  Google Scholar 

  • Cogdell RJ, Brune DC and Clayton RK (1974) Effects of extraction and replacement of ubiquinone upon the photochemical activity of reaction centers and chromatophores from Rhodopseudomonas sphaeroides. FEBS Lett 45: 344–347

    PubMed  CAS  Google Scholar 

  • Cogdell RJ, Monger TG and Parson WW (1975) Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim Biophys Acta 408: 189–199

    PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) Xray structure of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    PubMed  CAS  Google Scholar 

  • Delosme R and Joliot P (2002) Period four oscillations in chlorophyll fluorescence. Photosynth Res 73: 165–168

    PubMed  CAS  Google Scholar 

  • DeVault D and Chance B (1966) Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in Chromatium. Evidence for tunneling. Biophys J 6: 825–847

    PubMed  CAS  Google Scholar 

  • Dutton PL, Leigh JS, and Seibert MS (1972) Primary processes in photosynthesis: in situ ESR studies on the light-induced oxidized and triplet states of reaction center bacteriochlorophyll. Biochem Biophys Res Commun 46: 406–413

    PubMed  CAS  Google Scholar 

  • Dutton PL, Kaufmann KJ, Chance B and Rentzepis PM (1975) Picosecond kinetics of the 1250 nm band of the Rps. sphaeroides reaction center: the nature of the primary photochemical intermediary state. FEBS Lett 60: 275–280

    PubMed  CAS  Google Scholar 

  • Dutton PL, Prince RC, Tiede DM, Petty KM, Kaufmann KJ, Netzel TL and Rentzepis PM (1976) Electron transfer in the photosynthetic reaction center. Brookhaven Symp Biol 28: 213–37

    PubMed  Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Thesis, State University Utrecht, Utrecht, The Netherlands Duysens LNM (1953) Reversible changes in the light absorption of purple bacteria caused by illumination. Carnegie Inst Washington Yearb 52: 157

    Google Scholar 

  • Duysens LNM (1954) Reversible photo-oxidation of a cytochrome pigment in photosynthesizing Rhodospirillum rubrum. Nature 173: 692–693

    CAS  Google Scholar 

  • Duysens LNM (1958) The path of light in photosynthesis. Brookhaven Symp Biol 11: 10–25

    Google Scholar 

  • Duysens LNM (1989) The study of reaction centers and of the primary and associated reactions of photosynthesis by means of absorption difference spectrophotometry: a commentary. Biochim Biophys Acta 1000: 395–400

    Google Scholar 

  • Duysens LNM, Huiskamp WJ, Vos JJ and van der Hart JM (1956) Reversible changes in bacteriochlorophyll in purple bacteria upon illumination. Biochim Biophys Acta 19: 188–190

    PubMed  CAS  Google Scholar 

  • Fajer J, Brune DC, Davis MS, Forman A and Spaulding LD (1975) Primary charge separation in bacterial photosynthesis: oxidized chlorophylls and reduced pheophytin. Proc Natl Acad Sci USA 72: 4856–4960

    Google Scholar 

  • Goedheer JC (1958) Reversible oxidations of pigments in bacterial chromatophores. Brookhaven Symp Biol 11: 325–331

    Google Scholar 

  • Goedheer JC (1960) Spectral and redox properties of bacteriochlorophyll in its natural state. Biochim Biophys Acta 38: 389–399

    PubMed  CAS  Google Scholar 

  • Govindjee, Knox RS and Amesz J (1996)William Arnold. A tribute. Photosynth Res 48: 1–146

    CAS  Google Scholar 

  • Govindjee, Beatty JT and Gest H (2003) Celebrating the millennium - historical highlights of photosynthesis research, Part 2. Photosynth Res 76: 1–11 (this issue)

    CAS  Google Scholar 

  • Gunner M, Nichols A and Honig B (1996) Electrostatic potentials in Rhodopseudomonas viridis reaction centers: implications for the driving force and directionality of electron transfer. J Phys Chem 100: 4277–4291

    CAS  Google Scholar 

  • Haberkorn R and Michel-Beyerle ME (1977) On the mechanism of magnetic field effects in bacterial photosynthesis. Biophys J 26: 489–498

    Google Scholar 

  • Haberkorn R, Michel-Beyerle ME and Marcus RA (1979) On spinexchange and electron-transfer rates in bacterial photosynthesis. Proc Natl Acad Sci USA 76: 4185–4188

    PubMed  CAS  Google Scholar 

  • Halsey YD and Parson WW (1974) Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum. Biochim Biophys Acat 347: 404–416

    CAS  Google Scholar 

  • Heller BA, Holten D and Kirmaier C (1995) Control of electron transfer between the L-and M-sides of the photosynthetic reaction center. Science 269: 940–945

    PubMed  CAS  Google Scholar 

  • Hoff AJ, Rademaker H, van Grondelle R and Duysens LNM (1977) On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 460: 547–555

    PubMed  CAS  Google Scholar 

  • Holten D, Windsor MW, Parson WW and Thornber JP (1978) Primary photochemical processes in isolated reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 501: 112–126

    PubMed  CAS  Google Scholar 

  • Ivashin N, Källenbring B, Larsson S and Hansson Ö (1998) Charge separation in photosynthetic reaction center.J Phys Chem B 102: 5017–5022

    CAS  Google Scholar 

  • Jia Y, DiMagno TJ, Chan C-K, Wang Z, Du M, Hanson DK, Schiffer M, Norris JR, Fleming GR and Popov MS (1993) Primary charge separation in mutant reaction centers of Rhodobacter capsulatus. J Phys Chem 97: 13180–13191

    CAS  Google Scholar 

  • Katilius E, Turanchik T, Lin S, Taguchi AKW and Woodbury NW (1999) B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin. J Phys Chem B 103: 7386–7389

    CAS  Google Scholar 

  • Kaufmann KJ, Petty KM, Dutton PL and Rentzepis PM (1975) Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science 188: 1301–1304

    CAS  Google Scholar 

  • Kaufmann KJ, Petty KM, Dutton PL and Rentzepis PM (1976) Picosecond kinetics in reaction centers of Rps. sphaeroides and the effects of ubiquinone extraction and reconstitution. Biochem Biophys Res Commun 70: 839–845

    PubMed  CAS  Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985a) Temperature and detection-wavelength dependence of the picosecond electrontransfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta 810: 33–48

    CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985b) Picosecondphotodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments. Biochim Biophys Acta 810: 49–61

    CAS  Google Scholar 

  • Kirmaier C, Laporte L, Schenck CC and Holten D (1995) The nature and dynamics of the charge-separated intermediate in reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. 2. The rates and yields of charge separation and recombination. J Phys Chem 99: 8910–8917

    CAS  Google Scholar 

  • Kirmaier C, He C and Holten D (2001) Manipulating the direction of electron transfer in the bacterial reaction center by swapping Phe for Tyr near BChlM (L181) and Tyr for Phe near BChlL (M208). Biochemistry 40: 12132–12139

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Cua A, He CY, Holten D and Bocian DF (2002) Probing M-branch electron transfer and cofactor environment in the bacterial reaction center by addition of a hydrogen bond to the M-side bacteriopheophytin. J Phys Chem B 106: 495–503

    CAS  Google Scholar 

  • Klimov VV, Shuvalov VA, Krakhmaleva IN, Klevanik AA and Krasnovsky AA (1977) Photoreduction of bacteriopheophytin b in the primary light reaction of Rhodopseudomonas viridis chromatophores. Biokhim 42: 519–530 [in Russian]

    CAS  Google Scholar 

  • Kolbasov D and Scherz A (2000) Asymmetric electron transfer in reaction centers of purple bacteria strongly depends on different electron matrix elements in the active and inactive branches. J Phys Chem 104: 1802–1809

    CAS  Google Scholar 

  • Kuntz IDJ, Loach PA and Calvin M (1964) Absorption changes in bacterial chromatophores. Biophys J 4: 227–249

    PubMed  CAS  Google Scholar 

  • Lancaster CR and Michel H (1999) Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J Mol Biol 286: 883–898

    PubMed  CAS  Google Scholar 

  • Leigh JS and Dutton PL (1974) Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics. Biochim Biophys Acta 357: 67–77

    PubMed  CAS  Google Scholar 

  • Lin S, Jackson JA, Taguchi AKW and Woodbury NW(1999) B-side electron transfer promoted by absorbance of multiple photons in Rhodobacter sphaeroides R-26 reaction centers. J Phys Chem B 103: 4757–4763

    CAS  Google Scholar 

  • Lin S, Katilius E, Haffa ALM, Taguchi AKW and Woodbury NW (2001) Blue light drives B-side electron transfer in bacterial photosynthetic reaction centers. Biochem 40: 13767–13773

    CAS  Google Scholar 

  • Loach PA and Hall RL (1972) The question of the primary electron acceptor in bacterial photosynthesis. Proc Natl Acad Sci USA 69: 786–790

    PubMed  CAS  Google Scholar 

  • Nagarajan V, Parson WW, Davis D and Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochem 32: 12324–12336

    CAS  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T and Miki K (2000) Crystal structures of photosynthetic reaction center and highpotential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci USA 97: 13561–13566

    PubMed  CAS  Google Scholar 

  • Okamura MY, Isaacson RA and Feher G (1975) The primary acceptor in bacterial photosynthesis: the obligatory role of ubiquinone in photoactive reaction centers of Rp. spheroides. Proc Natl Acad Sci USA 72: 3491–3495

    PubMed  CAS  Google Scholar 

  • Okamura MY, Ackerson LC, Isaacson RA, Parson WW and Feher G (1976) The primary electron acceptor in Chromatium vinosum (strain D). Biophys J 16: 223a

    Google Scholar 

  • Olson JM and Chance B (1960a) Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. I. Absorption changes in whole cells. Arch Biochem Biophys 88: 26–39

    PubMed  CAS  Google Scholar 

  • Olson JM and Chance B (1960b) Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. II. Dependence of light reactions on intensity of irradiation and quantum efficiency of cytochrome oxidation. Arch Biochem Biophys 88: 40–53

    PubMed  CAS  Google Scholar 

  • Olson JM and Chance B (1962) Quantum efficiency of cytochrome photooxidation in a photosynthetic bacterium. Science 135: 101–102

    Google Scholar 

  • Ortega JM and Mathis P (1993) Electron transfer from the tetraheme cytochrome to the special pair in isolated reaction centers of Rhodopseudomonas viridis. Biochem 32: 1141–1151

    CAS  Google Scholar 

  • Parson WW (1968) The role of P870 in bacterial photosynthesis. Biochim Biophys Acta 153: 248–259

    PubMed  CAS  Google Scholar 

  • Parson WW (1969a) Cytochrome photooxidations in Chromatium chromatophores. Each P870 oxidizes two cytochrome C422 hemes. Biochim Biophys Acta 189: 397–403

    PubMed  CAS  Google Scholar 

  • Parson WW (1969b) The reaction between primary and secondary electron acceptors in bacterial photosynthesis. Biochim Biophys Acta 189: 384–396

    PubMed  CAS  Google Scholar 

  • Parson WW (1989) Don DeVault: A tribute on the occasion of his retirement. Photosynth Res 22: 11–13

    Google Scholar 

  • Parson WW and Case GD (1970) In Chromatium, a single photochemical reaction center oxidizes both cytochrome C552 and cytochrome C555. Biochim Biophys Acta 205: 232–245

    PubMed  CAS  Google Scholar 

  • Parson WW and Monger TG (1976) Interrelationships among excited states in bacterial reaction centers. Brookhaven Symp Biol 28: 195–211

    PubMed  Google Scholar 

  • Parson WW, Clayton RK and Cogdell RJ (1975) Excited states of photosynthetic reaction centers at low redox potentials. Biochim Biophys Acta 387: 265–278

    PubMed  CAS  Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017: 251–272

    PubMed  CAS  Google Scholar 

  • Peloquin JM, Bylina EJ, Youvan DC and Bocian DF (1990) Resonance Raman studies of genetically modified reaction centers from Rhodobacter capsulatus. Biochem 29: 8417–8424

    CAS  Google Scholar 

  • Reed DW, Zankel KL and Clayton RK (1969) The effect of redox potential on P870 fluorescence in reaction centers from Rhodopseudomonas spheroides. Proc Natl Acad Sci USA 63: 42–46

    PubMed  CAS  Google Scholar 

  • Robert B, LutzMand Tiede DM(1985) Selective photochemical reduction of either of the 2 bacteriopheophytins in reaction centers of Rps. sphaeroides R-26. FEBS Lett 183: 326–330

    CAS  Google Scholar 

  • Rockley MG, Windsor MW, Cogdell RJ and Parson WW (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci USA 72: 2251–2255

    PubMed  CAS  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Naegele T, Wachtveitl J, Meyer M, Scheer H and Zinth W (1994) Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers. Chem Phys Lett 223: 116–120

    CAS  Google Scholar 

  • Seibert M and DeVault D (1970) Relations between the laserinduced oxidations of the high and low potential cytochromes of Chromatium D. Biochim Biophys Acta 205: 220–231

    PubMed  CAS  Google Scholar 

  • Shuvalov VA and Klimov VV (1976) The primary photoreactions in the complex cytochrome-P-890●P-760 (bacteriopheophytin760 ) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440: 587–599

    PubMed  CAS  Google Scholar 

  • Stilz HU, Finkele U, Holzapfel W, Lauterwasser C, Zinth W and Oesterhelt D (1994) Influence of M subunit Thr222 and Trp252 on quinone binding and electron transfer in Rhodobacter sphaeroides reaction centres. Eur J Biochem 223: 233–242

    PubMed  CAS  Google Scholar 

  • Sistrom WR and Clayton RK (1964) Studies on a mutant of Rhodopseudomonas spheroides unable to grow photosynthetically. Biochim Biophys Acta 88: 61–73

    PubMed  CAS  Google Scholar 

  • Thurnauer MC, Katz JJ and Norris JR (1975) The triplet state in bacterial photosynthesis: possible mechanisms of the primary photoact. Proc Natl Acad Sci USA 72: 3270–3274

    PubMed  CAS  Google Scholar 

  • Tiede DM, Prince RC, Reed GH and Dutton PL (1976a) EPR properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum. FEBS Lett 65: 301–304

    PubMed  CAS  Google Scholar 

  • Tiede DM, Prince RC and Dutton PL (1976b) EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum. Biochim Biophys Acta 449: 447–467

    PubMed  CAS  Google Scholar 

  • Uphaus RA, Norris JR and Katz JJ (1974) Triplet states in photosynthesis. Biochem Biophys Res Commun 61: 1057–1063

    PubMed  CAS  Google Scholar 

  • Verméglio A and Clayton RK (1977) Secondary electron transfer in reaction centers of Rhodopseudomonas sphaeroides: out-ofphase periodicity of two for the formation of ubisemiquinone and fully reduced ubiquinone. Biochim Biophys Acta 459: 516–524

    PubMed  Google Scholar 

  • Vredenberg WJ and Duysens LNM (1964) Light-induced oxidation of cytochromes in photosynthetic bacteria between 20 and-170°. Biochim Biophys Acta 79: 456–463

    PubMed  CAS  Google Scholar 

  • Warshel A and Parson WW (2001) Dynamics of biochemical and biophysical reactions: insight from computer simulations. Quart Rev Biophys 34: 563–679

    CAS  Google Scholar 

  • Werner H-J, Schulten K and Weller A (1978) Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosynthesis. Biochim Biophys Acta 502: 255–268

    PubMed  CAS  Google Scholar 

  • Wraight CA (1977) The primary acceptor of photosynthetic bacterial reaction centers: direct observation of oscillatory behavior suggesting two closely equivalent species. Biochim Biophys Acta 459: 525–531

    PubMed  CAS  Google Scholar 

  • Wraight CA and Clayton RK (1974) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim Biophys Acta 333: 246–260

    CAS  Google Scholar 

  • Zankel KL, Reed DW and Clayton RK (1968) Fluorescence and photochemical quenching in photsynthetic reaction centers. Proc Natl Acad Sci USA 61: 1243–1249

    PubMed  CAS  Google Scholar 

  • Zhang LY and Friesner RA (1998) Ab initio calculation of electronic coupling in the photosynthetic reaction center. Proc Natl Acad Sci USA 95: 13603–13605

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parson, W.W. Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. Photosynthesis Research 76, 81–92 (2003). https://doi.org/10.1023/A:1024983926707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024983926707

Navigation