Skip to main content
Log in

Patterns and mechanisms of soil acidification in the conversion of grasslands to forests

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Grassland to forest conversions currently affect some of the world's most productive regions and have the potential to modify many soil properties. We used afforestation of native temperate humid grassland in the Pampas with eucalypts as an experimental system to 1) isolate forest and grassland imprints on soil acidity and base cation cycling and 2) evaluate the mechanisms of soil acidification. We characterized soil changes with afforestation using ten paired stands of native grasslands and Eucalyptus plantations (10–100 years of age). Compared to grasslands, afforested stands had lower soil pH (4.6 vs.5.6, p < 0.0001) and ∼40% lower exchangeable Ca (p < 0.001) in the top 20 cm of the soil. At three afforested stands where we further characterized soil changes to one meter depth, soil became increasingly acidic from 5 to 35 cm depth but more alkaline below ∼60 cm compared to adjacent grasslands, with few differences observed between 35 and 60 cm. These changes corresponded with gains of exchangeable acidity and Na in intermediate and deeper soil layers. Inferred ecosystem cation balances (biomass + forest floor + first meter of mineral soil) revealed substantial vertical redistributions of Ca and Mn and a tripling of Na pools within the mineral soil after afforestation. Soil exchangeable acidity increased 0.5–1.2 kmolc.Ha−1.yr−1 across afforested stands, although no aboveground acidic inputs were detected in wet + dry deposition, throughfall and forest floor leachates. Our results suggest that cation cycling and redistribution by trees, rather than cation leaching by organic acids or enhanced carbonic acid production in the soil, is the dominant mechanism of acidification in this system. The magnitude of soil changes that we observed within half a century of tree establishment in the Pampas emphasizes the rapid influence of vegetation on soil formation and suggests that massive afforestation of grasslands for carbon sequestration could have important consequences for soil fertility and base cation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber J.D. and Melillo J.M. 1991. Terrestrial Ecosystems. Saunders College Publishing, Philadelphia, US.

    Google Scholar 

  • Acosta M. 1873. Sericicultura y Silvicultura: Proyecto de Legislación. Anales de la Sociedad Rural Argentina 7: 239–241.

    Google Scholar 

  • Alban D.H. 1982. Efffects of nutrient accumulation by aspen, spruce, and pine on soil properties. Soil Science Society of America Journal 46: 853–861.

    Google Scholar 

  • Alfredsson H., Condron L.M., Clarholm M. and Davis M.R. 1998. Changes in soil acidity and organic matter following the establishment of conifers on former grassland in New Zealand. Forest Ecology & Management 112: 245–252.

    Google Scholar 

  • Amiotti N.M., Zalba P., Sanchez L.F. and Peinemann N. 2000. The impact of single trees on properties of loess-derived grassland soils in Argentina. Ecology 81: 3283–3290.

    Google Scholar 

  • Andrews J.A. and Schlesinger W.H. 2001. Soil CO2 dynamics, acidification and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles 15: 149–162.

    Google Scholar 

  • Andrews J.E., Brimblecombe P., Jickells T.D. and Liss P.S. 1996. An Introduction to Environmental Chemistry. Blackwell Science, Oxford, UK.

    Google Scholar 

  • Arnold G. 1992. Soil acidification as caused by the nitrogen uptake patterns of Scots pine (Pinus sylvestris). Plant and Soil 142: 41–51.

    Google Scholar 

  • Azara F. 1796. Diario de reconocimiento de las gurdias y fortines que guarecen la línea de la frontera de Buenos Aires. CEPEDA 8a. Compilation of original documents. Treasure of the National Library, Buenos Aires, Argentina.

  • Barlow N. 1933. Diary of the Voyage of H.M.S Beagle. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Binkley D. and Richter D.D. 1987. Nutrient cycles and H+ budgets of forest ecosystems. Advances in Ecological Research 16: 1–51.

    Google Scholar 

  • Bouwman A.F., Lee D.S., Asman W.A.H., Dentener F.J., VanderHoek K.W. and Olivier J.G. 1997. A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles 11: 561–587.

    Google Scholar 

  • Bravo D.A. 1967. Diccionario Quichua Santiagueño-castellano. Instituto Amigos del Libro Argentino, Buenos Aires, Argentina.

    Google Scholar 

  • Brimhall G.H., Chadwick O.A., Lewis C.J., Compston W., Williams I.S., Danti K.J. et al. 1991. Defformational mass transport and invasive processes in soil evolution. Science 255: 695–702.

    Google Scholar 

  • Bui E.N., Krogh L., Lavado R.S., Nachtergaele F.O., Tóth T. and Fitzpatrick R.W. 1998. Distribution of sodic soils: The world scene. In: Sumner M.E. and Naidu R. (eds), Sodic Soils: Distribution, Properties, Management and Environmental Consequences. Oxford University Press, New York, NY, USA, pp. 19–33.

    Google Scholar 

  • Cairns M.A., Brown S., Helmer E.H. and Baumgardner G.A. 1997. Root biomass allocation in the world's upland forests. Oecologia 111: 1–11.

    Google Scholar 

  • Canadell J.G., Mooney H.A., Baldocchi D.D., Berry J.A., Ehleringer J.R., Field C.B. et al. 2000. Carbon metabolism of the terrestrial biosphere: a multi-technique approach for improved understanding. Ecosystems 3: 115–130.

    Google Scholar 

  • Chen C.R., Condron L.M., Davisand M.R. and Sherlock R.R. 2000. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant and Soil 220: 151–163.

    Google Scholar 

  • Chen M. and Ma L.Q. 1998. Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. J of Environmental Quality 27: 1294–1300.

    Google Scholar 

  • Davis M.R. and Lang M.H. 1991. Increased nutrient availability in topsoils under conifers in the South Island high country. New Zealand Journal of Forestry Science 2: 165–179.

    Google Scholar 

  • Davis M.R. 1995. Influence of radiata pine seedlings on chemical properties of some New Zealand montane grassland soils. Plant & Soil 176: 255–262.

    Google Scholar 

  • Edwards D.G. and Asher C.J. 1982. Tolerance of crop and pasture species to manganese toxicity. In: Scaife (ed.), Proceedings of the ninth plant nutrition colloquium, Warwick, England. Commonwealth Agricultural Bureau, Farnham Royal, Bucks, UK, pp. 140–150.

    Google Scholar 

  • Elliot E.T., Heil J.W., Kelly E.F. and Curtis H.C. 1999. Soil structural and other physical properties. In: Robertson G.P., Coleman D.C., Bledsoe C.S. and Sollins P. (eds), Standard Soil Methods for long-term Ecological Research. LTER, New York, NY, USA.

    Google Scholar 

  • Finzi A.C., van Breemen N. and Canham C.D. 1998. Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological Applications 8: 440–446.

    Google Scholar 

  • Frankenberger W.T., Tabaitabai M.A., Adriano D.C. and Doner H.E. 1996. Bromine, Chlorine and Fluorine. In: Sparks S.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabaitabai M.A. et al. (eds), Methods of Soil Analysis – Part 3 Chemical Methods. Soil Science Society of America, Madison, Wisconsin, USA, pp. 833–868.

    Google Scholar 

  • Gambrell R.P. 1996. Manganese. In: Sparks S.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabaitabai M.A. et al. (eds), Methods of Soil Analysis – Part 3 Chemical Methods. Soil Science Society of America, Madison, Wisconsin, USA, pp. 665–682.

    Google Scholar 

  • Garavaglia J.C. 1999. Pastores y labradores de Buenos Aires. Ediciones de la Flor, Buenos Aires, Argentina.

    Google Scholar 

  • Geary T.F. 2001. Afforestation in Uruguay – Study of a changing landscape. J. Forestry 99: 35–39.

    Google Scholar 

  • Geis J.W., Boggess W.R. and Alexander J.D. 1970. Early effects of forest vegetation and topographic position on dark-colored, prairie-derived soils. Soil Science Society of America Proceedings 34: 105–111.

    Google Scholar 

  • Ghersa C.M., de la Fuente E., Suárez S. and León R.J.C. 2001. Woody species invasion in the Rolling Pampas grasslands, Argentina. Agriculture, Ecosystem and Environment 1792: 1–8.

    Google Scholar 

  • Gill R.A., Polley H.W., Johnson H.B., Anderson L.J., Maherali H. and Jackson R.B. 2002. Nonlinear grassland responses to past and future atmospheric CO2. Nature 417: 279–282.

    Google Scholar 

  • Grieve I.C. 1980. Some contrasts in soil development between grassland and deciduous woodland sites. J. of Soil Science 31: 137–145.

    Google Scholar 

  • Hall A.J., Rebella C.M., Ghersa C.M. and Culot J.P. 1992. Field-crop systems of the Pampas. In: Pearson C.J. (ed.), Field Crop Ecosystems – Ecosystems of the World. Elsevier, Amsterdam, The Netherlands, pp. 413–450.

    Google Scholar 

  • IGM 1997. Carta de imágen satelitaria de la República Argentina 1:250000. Instituto Geográfico Militar, Buenos Aires, Argentina.

    Google Scholar 

  • INDEC 1988. Censo nacional agropecuario 1988. Resultados generales, Instituto Nacional de Estadísticas y Censos, Buenos Aires, Argentina.

    Google Scholar 

  • INTA 1989. Mapa de suelos de la provincia de Buenos Aires – Escala 1:500.000. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.

    Google Scholar 

  • Jackson R.B., Schenk H.J., Jobbágy E.G., Canadell J., Colello G.D., Dickinson R.E. et al. 2000. Belowground consequences of vegetation change and their treatment in models. Ecol. Appl. 10: 470–483.

    Google Scholar 

  • Jackson R.B., Banner J.L., Jobbágy E.G., Pockman W.T. and Wall D.H. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418: 623–626.

    Google Scholar 

  • Jenny H. 1941. Factors of Soil Formation. McGraw-Hill, New York.

    Google Scholar 

  • Jenny H. 1980. The Soil Resource, Origin and Behavior. Springer-Verlag, New York, US.

    Google Scholar 

  • Jersak J., Amundson R. and Brimhall G. 1995. A mass balance analysis of podzolization: Examples from the northeastern United States. Geoderma 66: 15–42.

    Google Scholar 

  • Jobbágy E.G. and Jackson R.B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423–436.

    Google Scholar 

  • Jobbágy E.G. and Jackson R.B. 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53: 51–77.

    Google Scholar 

  • Judd T.S., Attiwill P.M. and Adams M.A. 1996. Nutrient concentrations in Eucalyptus: A synthesis in relation to differences between taxa, sites and components. In: Attiwill P.M. and Adams M.A. (eds), Nutrition of Euclaypts. CSIRO publishing, Collingwood, Victoria.

    Google Scholar 

  • Krishnaswamy J. and Richter D.D. 2002. Properties of advanced weathering-stage soils in tropical forests and pastures. Soil Science Society of America Journal 66: 244–253.

    Google Scholar 

  • Kuo S. 1996. Phosphorus. In: Sparks S.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabaitabai M.A. et al. (eds), Methods of Soil Analysis – Part 3 Chemical Methods. Soil Science Society of America, Madison, Wisconsin, USA, pp. 869–920.

    Google Scholar 

  • Lavado R.S. 1983. Evaluación de la relación entre composición química del agua de lluvia y el grado de salinidad y sodicidad de distintos suelos. Revista Facultad de Agronomía 4: 135–139.

    Google Scholar 

  • Likens G.E., Bormann F.H., Pierce R.S., Eaton J.S. and Johnson N.M. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York, US.

    Google Scholar 

  • MAGP 1998. Anuario estadístico agropecuario. Ministerio de Agricultura y Producción, Montevideo, Uruguay.

    Google Scholar 

  • Markewitz D., Richter D.D., Allenand H.L. and Urrego J.B. 1998. Three decades of observed soil acidification in the Calhoun Experimental Forest: has acid rain made a difference? Soil Science Society of America Journal 62: 1428–1439.

    Google Scholar 

  • Marschner H. 1995. Mineral Nutrition of Higher Plants. Academic Press, San Diego, US.

    Google Scholar 

  • Mazia C.N., Chaneton E.J., Ghersa C.M. and León R.J.C. 2001. Limits to tree species invasion in pampean grassland and forest plant communities. Oecologia 128: 594–602.

    Google Scholar 

  • McGrath D.A., Smith C.K., Gholz H.L. and Oliveira F.D. 2001. Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems 4: 625–645.

    Google Scholar 

  • Musto J.W. 1991. Impacts of plantation forestry on various soil types. In: Institute for Commercial Forestry Research Annual Report for 1991. ICFR, 37–39.

  • Nilsson S.I., Miller H.G. and Miller J.D. 1982. Forest growth as a possible cause of soil and water acidification: an examination of the concepts. Oikos 39: 40–49.

    Google Scholar 

  • Noble A.D., Little I.P. and Randall J. 1999. The influence of Pinus radiata, Quercus suber and improved pasture on soil chemical properties. Australian J. of Soil Research 37: 509–526.

    Google Scholar 

  • Panario D.H. 1991. Desarrollo forestal y medio ambiente en Uruguay. Serie investigaciones 85. Centro Interdisciplinario de estudios sobre desarrollo, Montevideo, Uruguay.

    Google Scholar 

  • Parfitt R.L., Percival H.J., Dahlgren R.A. and Hill L.F. 1997. Soil and solution chemistry under pasture and radiata pine in New Zealand. Plant and Soil 191: 279–290.

    Google Scholar 

  • Podesta G.P., Messina C.D., Grondona M.O. and Magrin G.O. 1999. Associations between grain crop yields in central-eastern Argentina and EI Nino-Southern Oscillation. Journal of Applied Meteorology 38: 1488–1498.

    Google Scholar 

  • Quideau S.A. and Bockheim J.G. 1996. Vegetation and cropping effects on pedogenic processes in a sandy prairie soil. Soil Science Society of America 60: 536–545.

    Google Scholar 

  • Raich J.W. and Tufekcioglu A. 2000. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 48: 71–90.

    Google Scholar 

  • Richardson D.M. 1998. Forestry trees as invasive aliens. Conservation Biology 12: 18–26.

    Google Scholar 

  • Richter D.D. 1986. Sources of acidity in some forested Udults. Soil Science Society of America Journal 50: 1584–1589.

    Google Scholar 

  • Richter D.D. and Markewitz D. 1995. How deep is soil? BioScience 45: 600–609.

    Google Scholar 

  • Richter D.D. and Markewitz D. 2001. Understanding Soil Change: Soil Sustainability Over Millennia, Centuries and Decades. Cambridge University Press, NY, USA.

    Google Scholar 

  • Richter D.D., Markewitz D., Wells C.G., Allen H.L., April R. and Heine P.R. 1994. Soil chemical change during three decades in a loblolly pine ecosystem. Ecology 75: 1463–1473.

    Google Scholar 

  • Robenhorst M.C. 1988. Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soils Science Society of America J. 52: 965–969.

    Google Scholar 

  • Roberts D.W. 1987. A dynamical system perspective on vegetation theory. Vegetatio 69: 27–33.

    Google Scholar 

  • Robertson G.P., Sollins P., Ellis B.G. and Lajtha K. 1999. Exchangeable ions, pH and cation exchange capacity. In: Robertson G.P., Coleman D.C., Bledsoe C.S. and Sollins P. (eds), Standard Soil Methods for Long-Term Ecological Research. LTER, New York, NY, USA.

    Google Scholar 

  • Rosas J.M. and Senillosa F. 1825. Diario de la comisión nombrada para establecer la nueva línea de la frontera de Buenos Aires. CEPEDA 8a. Compilation of original documents. Treasure of the National Library, Buenos Aires, Argentina.

  • Rudel T. and Ropel J. 1996. Regional patterns and historical trends in tropical deforestation, 1976–1990: A qualitative comparative analysis. AMBIO 25: 160–166.

    Google Scholar 

  • SAGPyA 2000. Primer inventario nacional de plantaciones forestales en macizo. Secretaría de Agricultura, Ganadería y Pesca Argentina. Buenos Aires – Argentina. Revista Forestal 20: 1–9.

    Google Scholar 

  • Sarmiento D.F. 1855. Plan Combinado de Educación Común, Silvicultura e Industria Pasturil. Document in Archivo General de la Nación Argentina.

  • Saviozzi A., Levi-Minzi R., Cardelli R. and Riffaldi T. 2001. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant & Soil 233: 251–259.

    Google Scholar 

  • Schlesinger W.H. 1997. Biogeochemistry, an Analysis of Global Change. Academic Press, San Diego.

    Google Scholar 

  • Senillosa F., Newton R. and Jurado J.M. 1878. Estancia San Juan. Anales de la Sociedad Rural Argentina 12: 565–570.

    Google Scholar 

  • Simonson R.M. 1959. Outline of a generalized theory of soil genesis. Soil Science Society of America Proceedings 23: 152–156.

    Google Scholar 

  • Soltanpour P.N., Jonson G.W., Workman S.M., Jones J.B. and Miller R.O. 1996. Inductively coupled plasma emission spectrometry and inductively coupled plasma-mass spectroscopy. In: Sparks S.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabaitabai M.A. et al. (eds), Methods of Soil Analysis – Part 3 Chemical Methods. Soil Science Society of America, Madison, Wisconsin,, pp. 91–140.

    Google Scholar 

  • Soriano A. 1991. Río de la Plata grasslands. In: Coupland R.T. (ed.), Natural Grasslands – Ecosystems of the World. Elsevier, Amsterdam, The Netherlands, pp. 367–405.

    Google Scholar 

  • Tate K.R., Scott N.A., Ross D.J., Parshotam A. and Claydon J.J. 2000. Plant effects on soil carbon storage and turnover in a montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand. Australian Journal of Soil Research 38: 685–698.

    Google Scholar 

  • Tecchi R.A. 1983. Contenido de silicofitolitos en suelos del sector sudoriental de la Pampa Ondulada. Ciencia del Suelo 1: 75–82.

    Google Scholar 

  • Teruggi M. 1957. The nature and origin of Argentinean loess. Journal of Sedimentology and Petrology 27: 322–332.

    Google Scholar 

  • Thomas G.W. 1996. Soil acidity and soil pH. In: Sparks S.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabaitabai M.A. et al. (eds), Methods of Soil Analysis – Part 3 Chemical Methods. Soil Science Society of America, Madison, Wisconsin, USA, pp. 475–490.

    Google Scholar 

  • Tricart J.L.F. 1973. Geomorfologia de la Pampa Deprimida. Colección científica XII. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.

    Google Scholar 

  • Ugolini F.C., Dahlgren R.A., Shoji S. and Ito T. 1988. An example of andolization and podzolization as revealed by soil solution studies, southern Hakkoda, northeastern Japan. Soil Science 145: 111–125.

    Google Scholar 

  • USDA 1998. Keys to Soil Taxonomy. Unites States Department of Agriculture, Natural Resource Conservation Service, Washington, DC, USA.

    Google Scholar 

  • Wright J.A., DiNicola A. and Gaitan E. 2000. Latin American forest plantations – Opportunities for carbon sequestration, economic development and financial returns. J. Forestry 98: 20–23.

    Google Scholar 

  • Zacharin R.F. 1996. Emigrant Eucalypts, Gum Trees as Exotics. Synergy Print, Cap Schank, Australia.

    Google Scholar 

  • Zar J.H. 1984. Biostatistical Analysis. Englewoods Cliff, New Jersey, NJ, USA.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jobbágy, E.G., Jackson, R.B. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64, 205–229 (2003). https://doi.org/10.1023/A:1024985629259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024985629259

Navigation