Skip to main content
Log in

Dissolved Organic Matter in Oceanic Waters

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The amount of information on oceanic dissolved organic matter (DOM) has increased dramatically in the last decade thanks to the advances in chemical characterization. This information has supported the development of some novel and important ideas for DOM dynamics in the ocean. Consequently, we have a better understanding of the importance of DOM in oceanic biogeochemical cycles. Here we review studies published mainly during 1995–2001, synthesize them and discuss unsolved problems and future challenges. The measurement, distribution and turnover of dissolved organic carbon (DOC) are presented as the bulk dynamics of the oceanic DOM. The size spectrum, elemental composition, and chemical compositions at molecular and functional group levels are described. The mechanisms proposed for the survival of biomolecules in DOM are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aluwihare, L. I., D. J. Repata and R. C. Chen (1997): A major biopolymeric component to dissolved organic carbon in surface seawater. Nature, 387, 166–169.

    Google Scholar 

  • Alvarez-Salgado, X. A. and A. E. J. Miller (1998): Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar. Chem., 62, 325–333.

    Google Scholar 

  • Amon, R. M. W. and R. Benner (1994): Rapid cycling of highmolecular-weight dissolved organic matter in the ocean. Nature, 369, 549–552.

    Google Scholar 

  • Amon, R. M. W. and R. Benner (1996): Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr., 41, 41–51.

    Article  Google Scholar 

  • Amon, R. M. W., H. P. Fitznar and R. Benner (2001): Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr., 46, 287–297.

    Article  Google Scholar 

  • Archer, D., E. T. Peltzer and D. L. Kirchman (1997): A time scale of DOC production in equatorial Pacific surface waters. Global Biogeochem. Cycles, 11, 435–452.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Tingstad (1983): The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257-263.

    Google Scholar 

  • Barber, R. T. (1968): Dissolved organic carbon from deep water resists microbial oxidation. Nature, 220, 274–275.

    Google Scholar 

  • Bates, N. R. and D. A. Hansell (1999): A high resolution study of surface layer hydrographic and biogeochemical properties between Chesapeake Bay and Bermuda. Mar. Chem., 67, 1–16.

    Google Scholar 

  • Bauer, J. E. and E. R. M. Druffel (1998): Ocean margins as a significant source of organic matter to the deep open ocean. Nature, 392, 482–485.

    Google Scholar 

  • Bauer, J. E., P. M. Williams and E. R. M. Druffel (1992): 14C activity of dissolved organic carbon fractions in the northcentral Pacific and Sargasso Sea. Nature, 357, 667–670.

    Google Scholar 

  • Benner, R. (2002): Chemical composition and reactivity. p. 59-90. In Biogeochemistry of Marine Dissolved Organic Matter, ed. by D.A. Hansell and C.A. Carlson, Academic Press, San Diego.

    Google Scholar 

  • Benner, R. and B. Biddanda (1998): Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnol. Oceanogr., 43, 1373–1378.

    Google Scholar 

  • Benner, R. and M. Strom (1993): A critical evaluation of the analytical blank associated with DOC measurements by high temperature catalytic oxidation. Mar. Chem., 41, 153–160.

    Google Scholar 

  • Benner, R., J. D. Pakulski, M. McCarthy, J. I. Hedges and P. G. Hatcher (1992): Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255, 1561–1564.

    Google Scholar 

  • Benner, R., B. Biddanda, B. Black and M. McCarthy (1997): Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration. Mar. Chem., 57, 243–263.

    Google Scholar 

  • Berner, R. A. (1989): Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr. Palaeoclimatol. Palaeoecol., 75, 97–122.

    Google Scholar 

  • Burdgie, D. J., W. M. Berelson, K. H. Coale, J. McManus and K. S. Johnson (1999): Fluxes of dissolved organic carbon from California continental margin sediments. Geochim. Cosmochim. Acta, 63, 1507–1515.

    Google Scholar 

  • Bussmann, I. and G. Kattner (2000): Distribution of dissolved Dissolved Organic Matter in Oceanic Waters 143 organic carbon in the central Arctic Ocean: the influence of physical and biological properties. J. Mar. System, 27, 209-219.

    Google Scholar 

  • Carlson, C. A. and H. W. Ducklow (1995): Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variation. Deep-Sea Res., 42, 639–656.

    Google Scholar 

  • Carlson, C. A., H. W. Ducklow and A. F. Michaels (1994): Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature, 371, 405–408.

    Google Scholar 

  • Carlson, C. A., H. W. Ducklow, D. A. Hansell and W. O. Smith, Jr. (1998): Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and Sargasso Sea. Limnol. Oceanogr., 43, 375–386.

    Google Scholar 

  • Carlson, C. A., D. A. Hansell, E. T. Peltzer and W. O. Smith, Jr. (2000): Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica. DeepSea Res. II, 47, 3201–3225.

    Google Scholar 

  • Carlson, D. J., L. M. Mayer, M. L. Brann and T. H. Mague (1985): Binding of monomeric organic compounds to macro-molecular dissolved organic matter in seawater. Mar. Chem., 16, 141–153.

    Google Scholar 

  • Cauwet, G. (1979): Organic chemistry of sea water particulates. Concept and developments. Oceanol. Acta, 1, 99–105.

    Google Scholar 

  • Cauwet, G. (1994): HTCO method for dissolved organic carbon analysis in seawater: influence of catalyst on blank estimation. Mar. Chem., 47, 55–64.

    Google Scholar 

  • Chen, R. F. and J. L. Bada (1992): The fluorescence of dissolved organic matter in seawater. Mar. Chem., 37, 191-221.

    Google Scholar 

  • Cherrier, J., J. E. Bauer and E. R. M. Druffel (1996): Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters. Mar. Ecol. Prog. Ser., 139, 267–279.

    Google Scholar 

  • Cherrier, J., J. E. Bauer, E. R. M. Druffel, R. B. Coffin and J. P. Chanton (1999): Radiocarbon in marine bacteria: Evidence for the ages of assimilated carbon. Limnol. Oceanogr., 44, 730–736.

    Google Scholar 

  • Clark, L. L., E. D. Ingall and R. Benner (1998): Marine phosphorus is selectively remineralized. Nature, 393, 426.

    Google Scholar 

  • Clark, L. L., E. D. Ingall and R. Benner (1999): Marine organic phosphorus cycling: novel insights from nuclear magnetic resonance. Amer. J. Sci., 299, 724–737.

    Google Scholar 

  • Coble, P. G. (1996): Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51, 325–346.

    Google Scholar 

  • Collinson, M. E., P. F. van Bergen, A. C. Scott and J. W. de Leeuw (1994): The oil generating potential of plants from coal and coal-bearing strata through time; a review with new evidence from carboniferous plants. In Coal and Coal-Bearing Strata as Oil-Prone Source Rocks?, ed. by A. C. Scott and A. J. Fleet, Geol. Soc. Special Publ., 77, 31–70.

  • Copin-Montégut, G. and B. Avril (1993): Vertical distribution and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Res. I, 40, 1963–1972.

    Google Scholar 

  • Creighton, T. E. (1993): Proteins: Structure and Molecular Properties. W. H. Freeman, New York, 507 pp.

    Google Scholar 

  • Dauwe, B., J. J. Middelburg, P. M. J. Herman and C. H. R. Heip (1999): Linking diagenetic alteration of amino acids and bulk organic matter reactivity. Limnol. Oceanogr., 44, 1809–1814.

    Article  Google Scholar 

  • De Leeuw, J. W. and C. Largeau (1993): A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. p. 23–72. In Organic Geochemistry: Principles and Applications, ed. by M. H. Engel and S. A. Macko, Plenum Press, New York.

    Google Scholar 

  • Dittmar, T., H. P. Fitznar and G. Kattner (2001): Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D-and L-amino acids. Geochim. Cosmochim. Acta, 65, 4103–4114.

    Google Scholar 

  • Doval, M. D. and D. A. Hansell (2000): Organic carbon and apparent oxygen utilization in the western South pacific and central Indian Oceans. Mar. Chem., 68, 249–264.

    Google Scholar 

  • Druffel, E. R. M., P. M. Williams, J. E. Bauer and J. R. Ertel (1992): Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res., 97, 15639–15659.

    Article  Google Scholar 

  • Emerson, S., P. Quay, D. Karl, C. Winn, L. Tupas and M. Landry (1997): Experimental determination of the organic carbon flux from open-ocean surface waters. Nature, 389, 951–954.

    Google Scholar 

  • Eppley, R. W. and B. J. Peterson (1979): Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 677–680.

    Google Scholar 

  • Everhsed, R. P. et al. (1997): Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science, 278, 432–433.

    Google Scholar 

  • Fogel, M. L. and N. Tuross (1999): Transformation of plant biochemicals to geologcal macromolecules during early diagenesis. Oecologia, 120, 336–346.

    Google Scholar 

  • Gelin, F. et al. (1996): Novel, resistant microalgal polyethers: An important sink of organic carbon in the marine environments. Geochim. Cosmochim. Acta, 60, 1275–1280.

    Google Scholar 

  • Gelin, F. et al. (1999): Distribution of aliphatic, nonhydrolyzable biopolymers in marine micoralgae. Org. Geochem., 30, 147–159.

    Google Scholar 

  • Guo, L. and P. H. Santschi (1997): Composition and cycling of coloids in marine environments. Rev. Geophys., 35, 17–40.

    Google Scholar 

  • Guo, L., P. H. Santschi and K. W. Warnken (1995): Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr., 40, 1392–1403.

    Google Scholar 

  • Guo, L., P. H. Santschi, L. A. Cifuentes, S. E. Trumbore and J. Southon (1996): Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic (13C and 14C) signatures. Limnol. Oceanogr., 41, 1242–1252.

    Google Scholar 

  • Hansell, D. A. (1993): Results and observations from the measurement of DOC and DON in seawater using a high-temperature catalytic oxidation technique. Mar. Chem., 41, 195-202.

    Google Scholar 

  • Hansell, D. A. and C. A. Carlson (1998a): Deep-ocean gradients in the concentration of dissolved organic carbon. Nature, 395, 263–266.

    Google Scholar 

  • Hansell, D. A. and C. A. Carlson (1998b): Net community production of dissolved organic carbon. Global Biogeochem. Cycles, 12, 443–453.

    Google Scholar 

  • Hansell, D. A. and C. A. Carlson (2001a): Marine dissolved organic matter and the carbon cycle. Oceanography, 14, 41-144 H.

    Google Scholar 

  • Hansell, D. A. and C. A. Carlson (2001b): Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. Deep-Sea Res. II, 48, 1649-1667.

    Google Scholar 

  • Hansell, D. A. and C. A. Carlson (2002): Marine Dissolved Organic Matter. Academic Press, San Diego, 774 pp.

    Google Scholar 

  • Hansell, D. A. and E. T. Peltzer (1998): Spatial and temporal variations of total organic carbon in the Arabian Sea. Deep-Sea Res. II, 45, 2171–2193.

    Google Scholar 

  • Hansell, D. A. and T. Y. Waterhouse (1997): Controls on the distribution of organic carbon and nitrogen in the eastern Pacific Oceans. Deep-Sea Res. I, 44, 843–857.

    Google Scholar 

  • Hansell, D. A., N. R. Bates and C. A. Carlson (1997a): Predominance of vertical loss of carbon from surface waters of the equatorial Pacific Ocean. Nature, 386, 59–61.

    Google Scholar 

  • Hansell, D. A., C. A. Carlson, N. R. Bates and A. Poisson (1997b): Horizontal and vertical removal of organic carbon in the equatorial Pacific Ocean: a mass balance assessment. Deep-Sea Res. II, 44, 2115–2130.

    Google Scholar 

  • Hansell, D. A., C. A. Carlson and Y. Suzuki (2002): Dissolved organic carbon export with North Pacific Intermediate Water formation. Global Biogeochem. Cycles, 16, 77–84.

    Google Scholar 

  • Harvey, H. R. and A. Mannino (2001): The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers. Org. Geochem., 32, 527–542.

    Google Scholar 

  • Hedges, J. I. (1992): Global biogeochemical cycles; progress and problems. Mar. Chem., 39, 67–93.

    Google Scholar 

  • Hedges, J. I. (2002): Why dissolved organics matter? p. 1–33. In Biogeochemistry of Marine Dissolved Organic Matter, ed. by D. A. Hansell and C. A. Carlson, Academic Press, San Diego.

    Google Scholar 

  • Hedges, J. I. and R. G. Keil (1995): Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 49, 81–115.

    Google Scholar 

  • Hedges, J. I., P. G. Hatcher, J. R. Ertel and K. J. Meyers-Schulte (1992): A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry. Geochim. Cosmochim. Acta, 56, 1753–1757.

    Google Scholar 

  • Hedges, J. I., B. A. Bergamaschi and R. Benner (1993): Comparative analyses of DOC and DON in natural waters. Mar. Chem., 41, 121–134.

    Google Scholar 

  • Hedges, J. I. et al. (2000): The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem., 31, 945–958.

    Google Scholar 

  • Hemsley, A. R., P. J. Barrie, W. G. Chaloner and A. C. Scott (1993): The composition of sporopollenin: its contribution to living and fossil spore systematics. Grana, Suppl. 1, 2-11.

    Article  Google Scholar 

  • Hubberten, U., R. J. Lara and G. Kattner (1994): Amino acid composition of seawater and dissolved humic substances in the Greenland Sea. Mar. Chem., 45, 121–128.

    Google Scholar 

  • Hubberten, U., R. J. Lara and G. Kattner (1995): Refractory organic compounds in polar waters: Relationship between humic substances and amino acids in the Arctic and Antarctic. J. Mar. Res., 53, 137–149.

    Google Scholar 

  • Kähler, P. and W. Koeve (2001): Marine dissolved organic matter: can its C:N ratio explain carbon overconsumption? Deep-Sea Res. I, 48, 49–62.

    Google Scholar 

  • Kähler, P., P. K. Bjornsen, K. Lochte and A. Antia (1997): Dissolved organic matter and its utilization by bacteria during spring in the Southern Ocean. Deep-Sea Res. II, 44, 341-353.

    Google Scholar 

  • Keil, R. G. and D. L. Kirchman (1991): Dissolved combined amino acids in marine waters as determined by a vaporphase hydrolysis method. Mar. Chem., 33, 243–259.

    Google Scholar 

  • Keil, R. G. and D. L. Kirchman (1994): Abiotic transformation of labile protein to refractory protein in sea water. Mar. Chem., 45, 187–196.

    Google Scholar 

  • Keil, R. G. and D. L. Kirchman (1999): Unitilization of dissolved protein and amino acids in the northern Sargasso Sea. Aquat. Microb. Ecol., 18, 293–300.

    Google Scholar 

  • Keil, R. G., D. B. Montlucon, F. G. Prahl and J. I. Hedges (1994): Sorptive preservation of labile organic matter in marine sediments. Nature, 370, 549–552.

    Google Scholar 

  • Kepkay, P. E. (2000): Colloids and the ocean carbon cycle. p. 35–56. In The Handbook of Environmental Chemistry, Vol. 5, Part D, Mar. Chem., ed. by P. Wangersky, Springer-Verlag Berlin/Heidelberg, Heidelberg.

    Google Scholar 

  • Kieber, D. J., J. McDaniel and K. Mopper (1989): Photochemical source of biological substances in sea water: implications for carbon cycling. Nature, 341, 637–639.

    Google Scholar 

  • Kieber, R. J., X. Zhou and K. Mopper (1990): Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol. Oceanogr., 35, 1503–1515.

    Google Scholar 

  • Kieber, R. J., L. H. Hydro and P. J. Seaton (1997): Photooxidation of triglycerides and fatty acids in seawater: Implication toward the formation of marine humic substances. Limnol. Oceanogr., 42, 1454–1462.

    Google Scholar 

  • Kirchman, D. L., C. Lancelot, M. Fasham, L. Legendre, G. Radach and M. Scott (1993): Dissolved organic matter in biogeochemical models of the ocean. p. 209–225. In Towards a Model of Ocean Biogeochemical Processes, ed. by G. T. Evans and M.J. R. Fasham, Springer-Verlag Berlin/ Heidelberg, Heidelberg.

    Google Scholar 

  • Knicker, H. (2000): Solid-state 2-D double cross polarization magic angle spinning 15N 13C NMR spectroscopy on degraded algal residues. Org. Geochem., 31, 337–340.

    Google Scholar 

  • Knicker, H. and P. G. Hatcher (1997): Survival of protein in an organic-rich sediment: possible protection by encapsulation in organic matter. Naturwissenschaften, 84, 231–234.

    Google Scholar 

  • Knicker, H., J. C. del Rio, P. G. Hatcher and R. D. Minard (2001): Identification of protein remnants in insoluble geopolymers using TMAH thermochemolysis/GC-MS. Org. Geochem., 32, 397–409.

    Google Scholar 

  • Koike, I. and L. Tupas (1993): Total dissolved nitrogen in the Northern North Pacific assessed by a high-temperature combustion method. Mar. Chem., 41, 209–214.

    Google Scholar 

  • Kolowith, L. L., E. D. Ingal and R. Benner (2001): Composition and cycling of marine organic phosphorus. Limnol. Oceanogr., 46, 309–320.

    Article  Google Scholar 

  • Largeau, C. (1995): Formation of refractory organic matter from biological precursors. p. 275–292. In Role of Nonliving Organic Matter in the Earth's Carbon Cycle, ed. by R. G. Zepp and C. H. Sonntag, John Wiley & Sons, Chichester.

    Google Scholar 

  • Laursen, A. K., L. M. Mayer and D. W. Townsend (1996): Dissolved Organic Matter in Oceanic Waters 145 Lability of proteinaceous material in estuarine seston and subcelular fractions of phytoplankton. Mar. Ecol. Prog. Ser., 136, 227–234.

    Google Scholar 

  • Lee, S. H., Y. C. Kang and J. A. Fuhrman (1995): Imperfect retention of natural bacterioplakton cells by glass fibre filters. Mar. Ecol. Prog. Ser., 119, 285–290.

    Google Scholar 

  • Libby, P. S. and P. A. Wheeler (1997): Particulate and dissolved organic nitrogen in the central and eastern equatorial Pacific. Deep-Sea Res. I, 44, 345–361.

    Google Scholar 

  • Lindroth, P. and K. Mopper (1979): High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with σ-phthaldialdehyde. Anal. Chem., 51, 1667–1674.

    Google Scholar 

  • Liu, Q., C. C. Parrish and R. Helleur (1998): Lipid class and carbohydrate concentrations in marine colloids. Mar. Chem., 60, 177–188.

    Google Scholar 

  • Maita, Y. and M. Yanada (1990): Vertical distribution of total dissolved nitrogen and dissolved organic nitrogen in seawater. Geochem. J., 24, 245–254.

    Google Scholar 

  • Mannino, A. and H. R. Harvey (1999): Lipids composition in particulate and dissolved organic matter in the Delaware Estuary: Sources and diagenetic patterns. Geochim. Cosmochim. Acta, 63, 2219–2235.

    Google Scholar 

  • Mannino, A. and H. R. Harvey (2000): Biochemical composition of particles and dissolved organic matter along an estuarine gradient: Sources and implications for DOM reactivity. Limnol. Oceanogr., 45, 775–788.

    Google Scholar 

  • Mantoura, R. F. C. and E. M. S. Woodward (1983): Conservative behavior of reverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta, 47, 1293–1309.

    Google Scholar 

  • Marshmann, N. A. and K. C. Marshall (1981): Bacterial growth on proteins in the presence of clay minerals. Soil Biol. Biochem., 13, 127–134.

    Google Scholar 

  • Mayer, L. M. (1994): Relationship between mineral surface and organic carbon concentration in soil and sediments. Chem. Geol., 114, 347–363.

    Google Scholar 

  • McCarthy, M. D., J. I. Hedges and R. Benner (1993): The chemical composition of dissolved organic matter in seawater. Chem. Geol., 107, 503–507.

    Google Scholar 

  • McCarthy, M. D., J. I. Hedges and R. Benner (1996): Major biochemical composition of dissolved high molecular weight organic matter in seawater. Mar. Chem., 55, 281-297.

    Google Scholar 

  • McCarthy, M. D., T. Pratum, J. I. Hedges and R. Benner (1997): Chemical composition of dissolved organic nitrogen in the ocean. Nature, 390, 150–154.

    Google Scholar 

  • McCarthy, M. D., J. I. Hedges and R. Benner (1998): Major bacterial contribution to marine dissolved organic nitrogen. Science, 281, 231–234.

    Google Scholar 

  • Menzel, D. W. and R. F. Vaccaro (1964): The measurement of dissolved organic and particulate carbon in seawater. Limnol. Oceanogr., 9, 138–142.

    Google Scholar 

  • Meon, B. and D. L. Kirchman (2001): Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Mar. Chem., 75, 185-199.

    Google Scholar 

  • Meybeck, M. (1982): Carbon, nitrogen, and phosphorus transport by world rivers. Amer. J. Sci., 282, 401–450.

    Article  Google Scholar 

  • Meyers-Schulte, K. and J. I. Hedges (1986): Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature, 321, 61–63.

    Google Scholar 

  • Mongenot, Th., A. Riboulleau, A. Garcette-Lepecq, S. Derenne, Y. Pouet, F. Baudin and C. Largeau (2001): Occurrence of proteinaceous moieties in S-and O-rich late Tithonian kerogen (Kashpir oil shales, Russia). Org. Geochem., 32, 199–203.

    Google Scholar 

  • Mopper, K., X. Zhou, R. J. Kieber, D. J. Kieber, R. J. Sikorski and R. D. Jones (1991): Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 353, 60–62.

    Google Scholar 

  • Moran, M. A. and R. G. Zepp (1997): Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr., 42, 1307–1316.

    Google Scholar 

  • Muhlebach, A. and K. Weber (1998): Origin and fate of dissolved sterols in the Weddell Sea, Antarctica. Org. Geochem., 29, 1595–1607.

    Google Scholar 

  • Murray, J. W., R. T. Barber, M. R. Roman, M. P. Bacon and R. A. Feely (1994): Physical and biological controls on carbon cycling in the Equatorial Pacific. Science, 266, 58–65.

    Google Scholar 

  • Murray, J. W., J. Young, J. Newton, J. Dunne, T. Chapin, B. Paul and J. J. McCarthy (1996): Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach. Deep-Sea Res. II, 43, 1095–1132.

    Google Scholar 

  • Myklestad, S. M. (2000): Dissolved organic carbon from phytoplankton. p. 111–148. In The Handbook of Environmental Chemistry, Vol. 5, Part D, Mar. Chem., ed. by P. Wangersky, Springer-Verlag Berlin/Heidelberg, Heidelberg.

    Google Scholar 

  • Nagata, T. (2000): Production mechanisms of dissolved organic matter. p. 121–152. In Microbial Ecology of the Oceans, ed. by D. L. Kirchman, Willey-Liss, New York.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman (1992): Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar. Ecol. Prog. Ser., 83, 233–240.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman (1996): Bacterial degradation of protein adsorbed to model submicron particles in seawater. Mar. Ecol. Prog. Ser., 132, 241–248.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman (1997): Roles of submicron particles and colloids in microbial food webs and biogeochemical cycles within marine environments. Adv. Microb. Ecol., 15, 81–103.

    Google Scholar 

  • Nguyen, R. and H. R. Harvey (2001): Preservation of protein in marine systems: Hydrophobic and other noncovalent associations as major stabilizing forces. Geochim. Cosmochim. Acta, 65, 1467–1480.

    Google Scholar 

  • Njoroge, F. G. and V. M. Monnier (1989): The chemistry of the mailard reaction under physiological conditions: a review. Prog. Clin. Biol. Res., 304, 85–107.

    Google Scholar 

  • Ogawa, H. (2000): Bulk chemical aspects of dissolved organic matter in seawater Review: The recent findings and unsolved problems. p. 311–337. In Dynamics and Characterization of Marine Organic Matter, ed. by N. Handa, E. Tanoue and T. Hama, Terra Sci. Pub. Comp., Tokyo/Kluwer Acad. Pub., Dordrecht.

    Google Scholar 

  • Ogawa, H. and N. Ogura (1992): Comparison of two methods for measuring dissolved organic carbon in sea water. Nature, 356, 696–698.

    Google Scholar 

  • Ogawa, H., R. Fukuda and I. Koike (1999): Vertical distribution of dissolved organic carbon and nitrogen in the Southern Ocean. Deep-Sea Res. I, 46, 1809–1826.

    Google Scholar 

  • Ogawa, H., Y. Amagai, I. Koike, K. Kaiser and R. Benner (2001): Production of refractory dissolved organic matter by bacteria. Science, 292, 917–920.

    Google Scholar 

  • Ogura, N. (1970): Dissolved organic carbon in the equatorial region of the Central Pacific. Nature, 227, 1335–1336.

    Google Scholar 

  • Opsahl, S. and R. Benner (1997): Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature, 386, 480–482.

    Google Scholar 

  • Opsahl, S., R. Benner and R. M. W. Amon (1999): Major flux of terrigenous dissolved organic matter through the Arctic Ocean. Limnol. Oceanogr., 44, 2017–2023.

    Google Scholar 

  • Pakulski, J. D. and R. Benner (1992): An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Mar. Chem., 40, 143-160.

    Google Scholar 

  • Pakulski, J. D. and R. Benner (1994): Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr., 39, 930–940.

    Google Scholar 

  • Pantoja, S. and C. Lee (1999): Molecular weight distribution of proteinaceous material in Long Island Soud sediments. Limnol. Oceanogr., 44, 1323–1330.

    Article  Google Scholar 

  • Parrish, C. C. (1988): Dissolved and particulate marine lipid classes: A review. Mar. Chem., 23, 17–40.

    Google Scholar 

  • Peltzer, E. T. and N. A. Hayward (1996): Spatial distribution and temporal variability of total organic carbon along 140 W in the equatorial Pacific Ocean in 1992. Deep-Sea Res. II, 43, 1155–1180.

    Google Scholar 

  • Poiner, H. N. et al. (1998): Molecular coproscopy: Dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science, 281, 402–406.

    Google Scholar 

  • Pomeroy, L. R. (1974): The ocean's food web: A changing paradigm. Bioscience, 24, 499–504.

    Google Scholar 

  • Qian, J. and K. Mopper (1996): Automated high-performance, high-temperature combustion total organic carbon analyzer. Anal. Chem., 68, 3090–3097.

    Google Scholar 

  • Robertson, K. M., P. M. Williams and J. L. Bada (1987): Acid hydrolysis of dissolved combined amino asids in seawater: a precautionary note. Limnol. Oceanogr., 32, 996–997.

    Article  Google Scholar 

  • Sharp, J. H. (1997): Marine dissolved organic carbon: Are the older value correct? Mar. Chem., 56, 265–277.

    Google Scholar 

  • Sharp, J. H. (2002): Analytical methods for dissolved organic carbon, nitrogen, and phosphorus. p. 35–90. In Biogeochemistry of Marine Dissolved Organic Matter, ed. by D. A. Hansell and C. A. Carlson, Academic Press, San Diego.

    Google Scholar 

  • Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, R. Dow and S. E. Fitzwater (1993): Re-evaluation of high temperature combustion and chemical oxidation measurements of dissolved organic carbon in seawater. Limnol. Oceanogr., 38, 1774–1782.

    Google Scholar 

  • Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, S. E. Fitzwater, E. T. Peltzer and L. M. Tupas (1995): Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison. Mar. Chem., 48, 91–108.

    Google Scholar 

  • Siegenthaler, U. and J. L. Sarmiento (1993): Atmospheric carbon dioxide and the ocean. Nature, 365, 119–125.

    Google Scholar 

  • Skoog, A. and R. Benner (1997): Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnol. Oceanogr., 42, 1803–1813.

    Google Scholar 

  • Sugimura, Y. and Y. Suzuki (1988): A high temperature catalytic oxidation method for the determination of no-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem., 41, 105–131.

    Google Scholar 

  • Suzuki, S., K. Kogure and E. Tanoue (1997): Immunochemical detection of dissolved proteins and their source organism. Mar. Ecol. Prog. Ser., 158, 1–9.

    Google Scholar 

  • Suzuki, Y. (1993): On the measurement of DOC and DON in seawater. Mar. Chem., 42, 287–288.

    Google Scholar 

  • Suzuki, Y., Y. Sugimura and T. Itoh (1985): A catalytic oxidation method for the determination of total nitrogen dissolved in seawater. Mar. Chem., 16, 83–97.

    Google Scholar 

  • Sweeney, C., D. A. Hansell, F. J. Millero, T. Takahashi, L. I. Gordon, C. A. Carlson, L. A. Codispoti, W. O. Smith and J. Marra (2000): Biogeochemical regimes, net community production and carbon export in the Ross Sea, Anatarctica. Deep-Sea Res. II, 47, 3369–3394.

    Google Scholar 

  • Tanoue, E. (1992): Vertical distribution of dissolved organic carbon in the North Pacific as determined by high temperature catalytic oxidation method. Earth Planet. Sci. Lett., 111, 201–216.

    Google Scholar 

  • Tanoue, E. (1995): Detection of dissolved protein molecules in oceanic waters. Mar. Chem., 51, 239–252.

    Google Scholar 

  • Tanoue, E. (2000): Proteins in the Sea—Synthesis. p. 383–463. In Dynamics and Characterization of Marine Organic Matter, ed. by N. Handa, E. Tanoue and T. Hama, Terra Sci. Pub. Comp., Tokyo/Kluwer Acad. Pub., Dordrecht.

    Google Scholar 

  • Tanoue, E., S. Nishiyama, M. Kamo and A. Tsugita (1995): Bacterial membrane: Possible source of a major dissolved proteins in seawater. Geochim. Cosmochim. Acta, 59, 2643-2648.

    Google Scholar 

  • Tanoue, E., M. Ishii and T. Midorikawa (1996): Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr., 41, 1334–1343.

    Article  Google Scholar 

  • Taylor, G. T., P. J. Troy and S. K. Sharma (1994a): Protein adsorption from seawater onto solid substrata: I. Influences of substratum surface properties and protein concentration. Mar. Chem., 45, 15–30.

    Google Scholar 

  • Taylor, G. T., P. J. Troy, M. Nuller, S. K. Sharma and B. E. Liebert (1994b): Protein adsorption from seawater onto solid substrata: II. Behavior of bound protein and its influence on interfacial properties. Mar. Chem., 47, 21–39.

    Google Scholar 

  • Thomas, C., G. Cauwet and J.-F. Minster (1995): Dissolved organic carbon in the equatorial Atlantic Ocean. Mar. Chem., 49, 155–169.

    Google Scholar 

  • Trumbore, S. E. and E. R. M. Druffel (1995): Carbon isotopes for characterizing sources and turnover of nonliving organaic matter. p. 7–22. In Role of Nonliving Organic Matter in the Earth's Carbon Cycle, ed. by R. G. Zepp and C. H. Sonntag, John Willey & Sons, Chichester.

    Google Scholar 

  • Tsugita, A., T. Uchida, H. W. Mewes and T. Atake (1987): A rapid vapor-phase acid (hydrochloric acid and trifluoroacetic acid) hydrolysis of peptide and protein. J. Biochem., 102, 1593–1597.

    Google Scholar 

  • Van Aarssen, B. G. K., H. C. Cox, P. Hoogendoorn and J. W. de Leeuw (1990): A cadinene biopolymer in fossil and extent dammar resins as a source for cadinanes and bicadinanes in Dissolved Organic Matter in Oceanic Waters 147 crude oils from South East Asia. Geochim. Cosmochim. Acta, 54, 3021–3031.

    Google Scholar 

  • Vasan, S. et al. (1996): An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature, 382, 275–278.

    Google Scholar 

  • Volkman, J. K. and E. Tanoue (2002): Chemical and biological studies of particulate organic matter in the ocean. J. Oceanogr., 58, 265–279.

    Google Scholar 

  • Wakeham, S. G., C. Lee and J. I. Hedges (2000): Fluxes of major biochemicals in the equatorial Pacific Ocean. p. 117-140. In Dynamics and Characterization of Marine Organic Matter, ed. by N. Handa, E. Tanoue and T. Hama, Terra Sci. Pub. Comp., Tokyo/Kluwer Acad. Pub., Dordrecht.

    Google Scholar 

  • Walsh, T. W. (1989): Total dissolved nitrogen in seawater: a new high temperature combustion method and a comparison with photo-oxidation. Mar. Chem., 26, 295–311.

    Google Scholar 

  • Wedborg, M., M. Hoppema and A. Skoog (1998): On the relation between organic and inorganic carbon in the Weddell Sea. J. Mar. Sys., 17, 59–76.

    Google Scholar 

  • Wheeler, P. A., M. Gosselin, E. Sherr, D. Thibault, D. L. Kirchman, R. Benner and T. E. Whitledge (1997): Active cycling of organic carbon in the central Arctic Ocean. Nature, 380, 697–699.

    Google Scholar 

  • Wheeler, P. A., J. M. Watkins and R. L. Hansing (1998): Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep-Sea Res. II, 44, 1571-1592.

    Google Scholar 

  • Wiebinga, C. J. and H. J. W. de Baar (1998): Determination of the distribution of dissolved organic carbon in the Indian sector of the Southern Ocean. Mar. Chem., 61, 185–201.

    Google Scholar 

  • Williams, P. J. leB. (1995): Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation ratios. Mar. Chem., 51, 17–29.

    Google Scholar 

  • Williams, P. J. leB. (2000): Heterotrophic bacteria and the dynamics of dissolved organic material. p. 153–200. In Microbial Ecology of the Oceans, ed. by D. L. Kirchman, Willey-Liss, New York.

    Google Scholar 

  • Williams, P. M. (1992): Measurement of dissolved organic carbon and nitrogen in natural waters. Oceanography, 5, 107-116.

    Google Scholar 

  • Williams, P. M. and E. R. M. Druffel (1987): Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330, 246–248.

    Google Scholar 

  • Williams, P. M. and E. R. M. Druffel (1988): Dissolved organic matter in the ocean: Comments on the controversy. Oceanography, 1, 14–17.

    Google Scholar 

  • Yamada, N., S. Suzuki and E. Tanoue (2000): Detection of Vibrio (Listonella) anguillarum porin homologue proteins and their source bacteria from coastal water. J. Oceanogr., 56, 583–590.

    Google Scholar 

  • Zang, Xu., J. D. H. van Heemst, K. J. Dria and P. G. Hatcher (2000): Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org. Geochem., 31, 679–695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, H., Tanoue, E. Dissolved Organic Matter in Oceanic Waters. Journal of Oceanography 59, 129–147 (2003). https://doi.org/10.1023/A:1025528919771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025528919771

Navigation