Skip to main content
Log in

A Spectral Approach for Determining Altimeter Wind Speed Model Functions

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We propose a new analytical algorithm for the estimation of wind speeds from altimeter data using the mean square slope of the ocean surface, which is obtained by integration of a widely accepted wind-wave spectrum including the gravity-capillary wave range. It indicates that the normalized radar cross section depends not only on the wind speed but also on the wave age. The wave state effect on the altimeter radar return becomes remarkable with increasing wind speed and cannot be neglected at high wind speeds. A relationship between wave age and nondimensional wave height based on buoy observational data is applied to compute the wave age using the significant wave height of ocean waves, which could be simultaneously obtained from altimeter data. Comparison with actual data shows that this new algorithm produces more reliable wind speeds than do empirical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel, J. R. (1994): An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 99, 16269–16291.

    Article  Google Scholar 

  • Banner, M. L., I. S. F. Jones and J. C. Trinder (1989): Wavenumber spectra of short gravity waves. J. Fluid Mech., 198, 321–344.

    Article  Google Scholar 

  • Brown, G. S. (1978): Backscattering from Gaussian-distributed perfectly conducting rough surfaces. IEEE Trans. Antennas Propag. AP-26, 472–482.

  • Brown, G. S. (1979): Estimation of surface winds using satellite-borne radar measurements at normal incidence. J. Geophys. Res., 84, 3974–3978.

    Google Scholar 

  • Brown, G. S., H. R. Stanley and N. A. Roy (1981): The wind speed measurement capability of space borne radar altimeter. IEEE J. Oceanic Eng., OE-6(2), 59–63.

    Article  Google Scholar 

  • Chelton, D. B. and P. J. McCabe (1985): A review of satellite altimeter measurement of sea surface wind speed: With a proposed new algorithm. J. Geophys. Res., 90, 4707–4720.

    Google Scholar 

  • Chelton, D. B. and F. J. Wentz (1986): Further development of an improved altimeter wind speed algorithm. J. Geophys. Res., 91, 14250–14260.

    Google Scholar 

  • Cox, C. S. and W. H. Munk (1954a): Measurements of the roughness of the sea surface from photographs of the Sun glitter. J. Opt. Soc. Am., 44, 838–850.

    Article  Google Scholar 

  • Cox, C. S. and W. H. Munk (1954b): Statistics of the sea surface derived from Sun glitter. J. Mar. Res., 13, 198–227.

    Google Scholar 

  • Cox, C. S. and W. H. Munk (1956): Slopes of the sea surface deduced from photographs of Sun glitter. Bull. Scripps Inst. Oceanogr., 6(9), 401–487.

    Google Scholar 

  • Donelan, M. A. and W. J. Pierson (1987): Radar scattering and equilibrium ranges in wind-generated wave with application to scatterometry. J. Geophys. Res., 92, C5, 4971–5029.

    Google Scholar 

  • Donelan, M. A., J. Hamilton and W. H. Hui (1985): Directional spectra of wind generated waves. Philos. Trans. R. Soc. London, Ser. A, 315, 509–562.

    Google Scholar 

  • Ebuchi, N. (1999): Growth of wind wave with fetch in the sea of Japan under winter monsoon investigated using data from satellite altimeter and scatterometer. J. Oceanogr., 55, 575–584.

    Article  Google Scholar 

  • Ebuchi, N. and H. Kawamura (1994): Validation of wind speeds and significant wave heights observed by the TOPEX altimeter around Japan. J. Oceanogr., 50, 479–487.

    Article  Google Scholar 

  • Ebuchi, N., H. Kawamura and Y. Toba (1987): Fine structure of laboratory wind-wave surfaces studied using an optical method. Boundary-Layer Meteorol., 39, 133–151.

    Article  Google Scholar 

  • Ebuchi, N., H. Kawamura and Y. Toba (1992a): Statistical study on the local equilibrium between wind and wind-waves by using data from buoy stations. J. Oceanogr., 48, 77–92.

    Article  Google Scholar 

  • Ebuchi, N., H. Kawamura and Y. Toba (1992b): Growth of wind waves with fetch observed by Geoseat altimeter in the Japan Sea under winter Monsoon. J. Geophys. Res., 97, 809–819.

    Google Scholar 

  • Ebuchi, N., H. Kawamura and Y. Toba (1993): Physical processes of microwave backscattering from laboratory wind waves surface. J. Geophys. Res., 98, 14669–14681.

    Google Scholar 

  • Elfouhaily, T., D. Vandemark, J. Gourrion and B. Chapron (1998): Estimation of wind stress using dual-frequency TOPEX data. J. Geophys. Res., 103, 25101–25108.

    Article  Google Scholar 

  • Forristall, G. Z. (1981): Measurements of a saturated range in ocean wave spectra. J. Geophys. Res., 86, C9, 8075–8084.

    Google Scholar 

  • Glazman, R. E. and A. Greysukh (1993): Satellite altimeter measurements of surface wind. J. Geophys. Res., 98, 2475–2483.

    Google Scholar 

  • Glazman, R. E. and S. H. Pilorz (1990): Effects of sea maturity on satellite-borne altimeter measurements. J. Geophys. Res., 95, 2857–2870.

    Google Scholar 

  • Goldhirsh, R. E. and E. B. Dobson (1985): A recommended algorithm for the determination of ocean surface wind speed using a satellite borne radar altimeter. Rep. JHU/ APLS1R85U-005, Appl. Phys. Lab., Johns Hopkins Univ., Laurel, Md.

    Google Scholar 

  • Hughes, B. A., H. L. Grant and R. W. Chappell (1977): A fast response surface-wave slope meter and measured wind wave moments. Deep-Sea Res., 24, 1211–1223.

    Article  Google Scholar 

  • Hwang P. A. and O. H. Shemdin (1988): The dependence of sea surface slope on atmosphere stability and swell conditions. J. Geophys. Res., 11, 13903–13912.

    Google Scholar 

  • Hwang, P. A., S. Atakturk, M. A. Sletten and D. B. Trizna (1996): A study of short water waves in the ocean. J. Phys. Oceanogr., 26, 1266–1285.

    Article  Google Scholar 

  • Hwang, P. A., W. J. Teague and G. A. Jacobs (1998): A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res., 103, 10451–10468.

    Article  Google Scholar 

  • Jackson, F. C., W. T. Walton, D. E. Hines, B. A. Walter and C. Y. Peng (1992): Sea surface mean square slope from Kuband backscatter data. J. Geophys. Res., 97, C7, 11411–11427.

    Article  Google Scholar 

  • Jähne, B. and K. S. Riemer (1990): Two-dimensional wave number spectra of small-scale water surface waves. J. Geophys. Res., 95, 11531–11546.

    Google Scholar 

  • Joseph, P. S., S. Kawai and Y. Toba (1981): Ocean wave prediction by a hybrid model—Combination of singleparameterized wind waves with spectrally treated swells. Sci. Rep. Tohoku Univ. Ser. 5 (Tohoku Geophys. J.), 28, 27–45.

    Google Scholar 

  • Kahma, K. K. (1981): A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr., 11, 1503–1515.

    Article  Google Scholar 

  • Kitaigorodskii, S. A. (1983): On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr., 13, 816–827.

    Article  Google Scholar 

  • Lefevre, J. M., J. Barckicke and Y. Menard (1994): A significant wave height dependent function for TOPEX/ POSEIDON wind speed retrieval. J. Geophys. Res., 99, 25035–25049.

    Article  Google Scholar 

  • Liu, Y. and X.-H. Yan (1995): The wind-induced wave growth rate and the spectrum of the gravity-capillary waves. J. Phys. Oceanogr., 25, 3196–3218.

    Article  Google Scholar 

  • Liu, Y., X.-H. Yan, W. T. Liu and P. A. Hwang (1997): The probability density function of ocean surface slopes and its effects on radar backscatter. J. Phys. Oceanogr., 27, 782–797.

    Article  Google Scholar 

  • Liu, Y., M.-Y. Su, X.-H. Yan and W. T. Liu (2000): The meansquare slope of ocean surface waves and its effects on radar backscatter. J. Atmos. Oceanic Technol., 17, 1092–1105.

    Article  Google Scholar 

  • Masko, H., K. Okamoto, M. Shimada and S. Niwa (1986): Measurements of microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometer. J. Geophys. Res., 91, 13065–13083.

    Google Scholar 

  • Mitsuyasu, H. and T. Honda (1974): The high frequency spectrum of wind-generated waves. J. Oceanogr. Soc. Japan, 30, 185–198.

    Article  Google Scholar 

  • Phillips, O. M. (1977): The Dynamics of the Upper Ocean. 2nd ed., Cambridge University Press, 336 pp.

  • Phillips, O. M. (1985): Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505–531.

    Article  Google Scholar 

  • Plant, W. J. (1982): A relationship between wind stress and wave slope. J. Geophys. Res., 87. 1961–1967.

    Google Scholar 

  • Shaw, J. A. and J. H. Churnside (1997): Scanning-laser glint measurements of sea-surface slope statistics. Appl. Opt., 36, 4202–4213.

    Google Scholar 

  • Skirta, E. A., F. Daout and J. Saillard (1993): Electrical properties of sea water surfaces at microwave frequencies. Rep. 92/3412/A000, Inst. de Rech. et d'Enseign. Super. aux Tech. de l'Electron. Univ. de Nantes, Nantes, France.

    Google Scholar 

  • Tang, S. and O. H. Shemdin (1983): Measurement of high frequency waves using a wave follower. J. Geophys. Res., 88, 9832–9840.

    Google Scholar 

  • Toba, Y. (1972): Local balance in the air-sea boundary processes I. On the growth process of wind waves. J. Oceanogr. Soc. Japan, 28, 109–120.

    Article  Google Scholar 

  • Toba, Y. (1973): Local balance in the air-sea boundary processes III. On the spectrum of wind waves. J. Oceanogr. Soc. Japan, 29, 209–220.

    Article  Google Scholar 

  • Valenzuela, G. R. (1978): Theories for the interaction of electromagnetic and ocean waves—A review. Boundary-Layer Meteorology, 13, 61–85.

    Article  Google Scholar 

  • Vandemark, D.,J. B. Edson and B. Chapron (1997): Altimeter estimation of sea surface wind stress for light to moderate winds. J. Atmos. Oceanic Technol., 14, 716–722.

    Article  Google Scholar 

  • Walsh, E. J., D. C. Vandemark, C. A. Friehe, S. P. Burns, D. Khelif, R. N. Swift and J. F. Scott (1998a): Measurements sea surface mean square slope with a 36-GHz scanning radar altimeter. J. Geophys. Res., 103, 12587–12601.

    Article  Google Scholar 

  • Walsh, E. J., D. E. Hagan, D. P. Rogers, R. A. Weller, C. W. Fairall, C. A. Friehe, S. P. Burns, D. Khelif, D. C. Vandemark, R. N. Swift and J. F. Scott (1998b): Observations of sea surface mean square slope under light wind during the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J. Geophys. Res., 103, 12603–12612.

    Article  Google Scholar 

  • Witter, D. L. and D. B. Chelton (1991): A Geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm. J. Geophys. Res., 96, 8853–8860.

    Google Scholar 

  • Wu, J. (1980): Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 10, 727–740.

    Article  Google Scholar 

  • Wu, J. (1988): Wind-stress coefficients at light winds. J. Atmos. Oceanic Technol., 5, 885–888.

    Article  Google Scholar 

  • Wu, J. (1990): Mean square slope of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci., 25, 37–48.

    Google Scholar 

  • Wu, J. (1992): Near nadir microwave specular return from the sea surface—Altimeter algorithm for wind and wind stress. J. Atmos. Oceanic Technol., 9, 659–667.

    Article  Google Scholar 

  • Young, I. R. (1993): An estimate of the GEOSAT altimeter wind speed algorithm at high wind speeds. J. Geophys. Res., 98, 20275–20285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Toba, Y. A Spectral Approach for Determining Altimeter Wind Speed Model Functions. Journal of Oceanography 59, 235–244 (2003). https://doi.org/10.1023/A:1025599423405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025599423405

Navigation