Skip to main content
Log in

Spatial patterns of demography and genetic processes across the species' range: Null hypotheses for landscape conservation genetics

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Compared with populations near the core of aspecies' range, edge populations tend to becharacterized by low density and high temporalvariation. Based on empirical studiesquantifying this pattern, we show thateffective population size (N e)could be 2 to 30 times greater near the coreof the species' range than near the edge ofthe range. Hence, the rate of genetic driftmay be 2 to 30 times greater near the edge ofthe range. Despite these strong spatialpatterns in N e, empirical findingsindicate that peripheral populations sometimeshave less but sometimes have more geneticdiversity than core populations. Our analysisindicates that this variation can be explainedby uncertainty in spatial patterns ofmigration rates. Nevertheless, our analysis:(1) provides a framework or null hypothesis forempirically assessing how spatial patterns ofmigration or selection influence large-scalespatial patterns of genetic diversity, (2)highlights the potential importance ofcontemporary processes, such as spatialpatterns in N e (cf. historicalphenomena, such as range expansion) in thedevelopment and maintenance of large-scalespatial patterns in genetic diversity, and (3) provides new context for understanding the conservation value and vulnerability of peripheralpopulations. The conservation ofecological/evolutionary processes requiresunderstanding large scale spatial patterns ofdemographic and genetic processes such as thatdescribed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf FW, Bayles D, Bottom DL, Currens KP Frissell CA, Hankin D, Lichatowich JA, Nehlson W, Trotter PC, Williams TH (1997) Prioritizing Pacific salmon stocks for conservation. Conserv. Biol., 11, 140–152.

    Google Scholar 

  • Bart J, Hofschen M, Peterjohn BG (1995) Reliability of the breeding bird survey: effects of restricting surveys to roads. Auk, 112, 758–761.

    Google Scholar 

  • Bellemin J, Adest G, Gorman GC (1978) Genetic uniformity in northern populations of Thamnopsis sirtalis (Serpentes: Colubridae). Copeia, 1978, 150–151.

    Google Scholar 

  • Betancourt JL, Schuster WS, Mitton JB, Anderson RS (1991) Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 72, 1685–1697.

    Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am. Nat., 124, 255–279.

    Google Scholar 

  • Caughley G, Grice D, Barker R, Brown B (1988) The edge of the range. J. Anim. Ecol., 57, 771–785.

    Google Scholar 

  • Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature, 403, 84–86.

    Google Scholar 

  • Crow JF, Kimura M (1970) An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Curnutt JL, Pimm SL, Maurer BA (1996) Population variability of sparrows in space and time. Oikos, 76, 131–144.

    Google Scholar 

  • Cwynar LC, MacDonald GM (1987) Geographic variation in lodgepole pine in relation to population history. Am. Nat., 129, 463–469.

    Google Scholar 

  • Descimon H, Napolitano M (1993) Enzyme polymorphism, wing pattern variability, and geographic isolation in an endangered butterfly species. Biol. Conserv., 66, 117–123.

    Google Scholar 

  • Erb J, Stenseth NC, Boyce MS (2000) Geographic variation in population cycles of Canadian muskrats (Ondatra zibethicus). Can. J. Zool., 78, 1009–1016.

    Google Scholar 

  • Frankham R, Ralls K (1998) Inbreeding leads to extinction. Nature, 392, 441–442.

    Google Scholar 

  • Futuyma DJ (1986) Evolutionary Biology, 2nd edn. Sinauer, Sunderland, MA.

    Google Scholar 

  • Gockel J, Kennington WJ, Hoffman A, Goldstein DB, Partridge L (2001) Nonclinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster. Genetics, 158, 319–323.

    Google Scholar 

  • Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science, 245, 477–480.

    Google Scholar 

  • Gyllenberg M, Hanski I (1992) Single-species metapopulation dynamics: A structured model. Theoretical Population Biology, 42, 35–61.

    Google Scholar 

  • Hanski I, Gilpin ME, editors (1997) Metapopulation Biology. Academic Press, New York.

    Google Scholar 

  • Hengeveld R (1990) Dynamic Biogeography. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hengeveld R, Haeck J (1982) The distribution of abundance. I. Measurements. J. Biogeogr., 9, 303–316.

    Google Scholar 

  • Highton R, Webster TP (1976) Geographic protein variation and divergence in populations of the salamander Plethodon cinerus. Evol., 30, 33–45.

    Google Scholar 

  • Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol. and Evol., 9, 223–227.

    Google Scholar 

  • Hoffmann AA, Parson PA (1991) Evolutionary Genetics and Environmental Stress. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Holt, RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Pop. Biol., 28, 181–208.

    Google Scholar 

  • Holt, RD (1987) Population dynamics and evolutionary processes: The manifold roles of habitat selection. Evol. Ecol., 1 331–347.

    Google Scholar 

  • Jain SK, Rai KN, Singh RS (1981) Population biology of Avena XI. Variation in peripheral isolates of A. barbata. Genetica, 56, 213–215.

    Google Scholar 

  • Kendall WS (1992) Fractal scaling in the geographic distribution of populations. Ecol. Model., 64, 65–69.

    Google Scholar 

  • Lande R (1991) Population dynamics and extinction in heterogeneous environments: the northern spotted owl. In: Bird population studies. Relevance to conservation and management (eds. Perrins CM, Lebreton J-D, Hirons GJM), pp. 566–580. Oxford University Press, Oxford.

    Google Scholar 

  • Lande R (1992) Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution, 46, 381–389.

    Google Scholar 

  • Lande R (1995) Mutation and conservation. Conserv. Biol., 9, 782–791.

    Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends in Ecol. Evol., 8, 409–413.

    Google Scholar 

  • Lawton JH (1995) Population dynamic principles. In: Extinction Rates (eds. Lawton JH, May RM), pp. 147–163. Oxford University Press, Oxford.

    Google Scholar 

  • Lawton JH, Nee S, Letcher AJ, Harvey PH (1994) Animal distributions: patterns and processes. In: Large Scale Ecology and Conservation Biology (eds. Edwards PJ, May RM, Webb, NR), pp. 41–58. Blackwell, Oxford.

    Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv. Biol., 9, 753–760.

    Google Scholar 

  • Linder ET, Villard M-A, Maurer BA, Schmidt EV (2000) Geographic range structure in North American landbirds: variation with migratory strategy, trophic level, and breeding habitat. Ecography, 23, 678–686.

    Google Scholar 

  • Lomolino MV, Channel R (1995) Splendid isolation: Pattern of geographic range collapse in endangered mammals. J. Mamm., 76, 335–347.

    Google Scholar 

  • Lynch M (1996) A quantitative-genetic perspective on conservation issues. In: Conservation Genetics: Case Histories from Nature (eds. Avise JC, Hamrock JL), pp. 471–501. Chapman & Hall, New York.

    Google Scholar 

  • Mace G, Lande R (1991) Assessing extinction threats: Towards a reevaluation of IUCN threatened species categories. Conserv. Biol., 5, 148–157.

    Google Scholar 

  • Maurer BA, Villard MA (1994) Geographic variation in abundance of North American birds. Res. Explor., 10, 306–317.

    Google Scholar 

  • Meffert, LM (1999) How speciation experiments relate to conservation biology. Bioscience, 49, 701–711.

    Google Scholar 

  • Merila J, Björklund M, Baker A (1996) Genetic population structure and gradual northward decline of genetic variability in the greenfinch (Carduelis chloris). Evol., 50, 2548–2557.

    Google Scholar 

  • Montgomery ME, Woodworth LM, Nurthen RK, Gilligan DM, Briscoe DA, Frankham R (2000) Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions. Conserv. Genet., 1, 33–43.

    Google Scholar 

  • Nunney L (2000). The limits to knowledge in conservation genetics: the value of effective population size. Evol. Biol., 32, 179–194.

    Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv. Biol., 8, 175–184.

    Google Scholar 

  • Pullium HR (1988) Sources, sinks, and population regulation. Am. Nat., 132, 652–661.

    Google Scholar 

  • Pearl M (1992) Conservation of Asian primates: aspects of genetics and behavioral ecology that predict vulnerability. In: Conservation Biology: The Theory and Practice of Nature Conservation Preservation and Management (eds. Fielder PL, Jain SK), pp. 297–320. Chapman & Hall, New York.

  • Ranta E, Kaitala V, Lindstrom J, Helle E (1997) The Moran effect and synchrony in population dynamics. Oikos, 78, 136–142.

    Google Scholar 

  • Sauer JR, Hines JE, Thomas I, Fallon J, Gough G (2000) The North American Breeding Bird Survey, results and analysis 1966-1999, version 98.1 (http://www.mbrpwrc. usgs.gov/bbs/bbs.html), Patuxent Wildlife Research Center, Laurel, Maryland, USA.

    Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P. Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491–494.

    Google Scholar 

  • Sage RD, Wolff JO (1986) Pleistocene glaciations, fluctuating ranges, and low genetic diversity in a large mammal (Ovis dalli). Evol., 40, 1092–1093.

    Google Scholar 

  • Schnabel A, Hamrick JL (1990) Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminossae). Amer. J. Bot., 77, 1060–1069.

    Google Scholar 

  • Scudder GGE (1989) The adaptive significance of Marginal Populations: A general perspective. In: Proceedings of the National Workshop on Effects of Habitat Alternation on Salmonid Stocks (eds. Levings CD, Holtby LB, Henderson MA), pp. 180–185. Can. Spec. Publ. Fish. Aquat. Sci., 105.

  • Stenseth NC, Chan K-S, Tong H, Boonstra R, Boutin S, Krebs CJ, Post E, O'Donoghue m, Yoccoz NG, Forchhammer MC, Hurrell JW (1999) Common dynamic structure of canada lynx populations within three climatic regions. Science, 285, 1071–1074.

    Google Scholar 

  • Stevens G (1992) Spilling over the competitive limits to species coexistence. In: Systematics, Ecology, and the Biodiversity Crisis (ed. Edlridge N), pp. 40–58. Columbia University Press, New York.

    Google Scholar 

  • Strange RM, Burr BM (1998) Intraspecific phylogeography of North American highland fishes: A test of the Pleistocene vicariance hypothesis. Evol., 51, 885–897.

    Google Scholar 

  • Stewart CN, Excoffier L (1996) Assessing population genetic structure and variability with RAPD data: Application to Vaccinium macrocarpon (American cranberry). J. Evol. Biol., 9, 153–171.

    Google Scholar 

  • Taylor LR (1986) Synoptic dynamics, migration and the Rothamsted insect survey. J. Anim. Ecol., 55, 1–38.

    Google Scholar 

  • Tigerstedt PMA (1973) Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas, 75, 47–60.

    Google Scholar 

  • Templeton AR (1998) Nest clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol., 7, 381–397.

    Google Scholar 

  • Templeton AR, Routman E, Phillips C (1995) Seperating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger Salamander, Ambystoma tigrinum. Genetics, 140, 767–782.

    Google Scholar 

  • Turchin P, Hanski I (1997) An empirically based model for latitudinal gradient in vole population dynamics. Am. Nat., 149, 842–874.

    Google Scholar 

  • Vaisanen RA, Lehvaslaiho H (1984) Absence of genetic polymorphism in a northern population of house sparrow, Passer domesticus. Heredita, 100, 161–162.

    Google Scholar 

  • Vucetich JA, Waite TA (1998) The number of censuses required for demographic estimation of effective population size. Conserv. Biol., 12, 1023–1030.

    Google Scholar 

  • Vucetich JA, Waite TA (2000) Is one-migrant-per-generation suffi-cient for the genetic management of fluctuating populations? Animal Conserv., 3, 261–266.

    Google Scholar 

  • Vucetich JA, Waite TA, Nunney L (1997) Fluctuating population size and the ratio of effective size to census size (Ne/N). Evol., 51, 2017–2021.

    Google Scholar 

  • Vucetich LM, Vucetich JA, Waite TA, Peterson RO (in review) Genetic diversity and fitness in unmanipulated, natural populations of deer mice (Peromyscus maniculatus). Ecol. Applications.

  • Wolf CM, Griffith B, Reed C, Temple SA (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv. Biol., 10, 1142–1153.

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics, 16, 97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Vucetich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vucetich, J.A., Waite, T.A. Spatial patterns of demography and genetic processes across the species' range: Null hypotheses for landscape conservation genetics. Conservation Genetics 4, 639–645 (2003). https://doi.org/10.1023/A:1025671831349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025671831349

Navigation