Skip to main content
Log in

Microfluidic Patterning of Cellular Biopolymer Matrices for Biomimetic 3-D Structures

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microtechnology has found exciting potential applications in recreating in vivo tissue architecture due to its ability to create complex structures with size scales spanning from the micron to millimeter range. However, most microscale systems are 2-dimensional, and few 3-dimensional systems are being explored. We have developed a versatile technique to create a 3-dimensional microscale hierarchical system for cells and biopolymers. By taking advantage of the contraction of hydrogel matrix biopolymers, one can achieve multiple layers of cells within biopolymers using microchannels, and eventually form a hierarchical layered microstructure of cells and biopolymer. Pressure-driven microfluidics was applied in order to transport cells within matrix biopolymers through the channels with controled flow rates. Flow imaging was used to estimate the shear stress and examine the useful range of flow rates for biopolymer fluids to form the layered structure. Activated glass chips were used to effectively immobilize cell-matrix assemblies. For our model system, a vascular structure was set up using endothelial cells, smooth muscle cells and fibroblasts to mimic the three layers found in vivo (intima, media and adventitia). Collagen or collagen-chitosan matrix biopolymers were used as constructs throughout all layers. The final structure was characterized using confocal microscopy for reconstructed 3-dimensional cell distribution. Using this approach, a“neotissue” can be formed with cellular and biopolymer components engineered to model in vivo systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V.H. Barocas and R.T. Tranquillo, J. Biomech. Eng. 119, 137 (1997).

    Google Scholar 

  • V.H. Barocas, A.G. Moon, and R.T. Tranquillo, J. Biomech. Eng. 117, 161 (1995).

    Google Scholar 

  • S.N. Bhatia, U.J. Balis, M.L. Yarmush, and M. Toner, Biotech. Prog. 14, 378 (1998).

    Google Scholar 

  • S.N. Bhatia, U.J. Balis, M.L. Yarmush, and M. Toner, J. Biomater. Sci. Polym. Ed. 9, 1137 (1998).

    Google Scholar 

  • G.F. Bickerstaff, ed., Immobilization of Enzymes and Cells (Humana, Totowa, NJ, 1997).

  • D.W. Branch, B.C. Wheeler, G.J. Brewer, and D.E. Leckband, IEEE 47, 290 (2000).

    Google Scholar 

  • D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I.S. Choi, D.E. Ingber, and G.M. Whitesides, Proc. Natl. Acad. Sci. 97, 2408 (2000).

    Google Scholar 

  • E.T. Den Braber, J.E. de Ruijter, L.A. Ginsel, A.F. von Recom, and J.A. Jansen, J. Biomed. Mat. Res. 40, 291 (1998).

    Google Scholar 

  • T.A. Desai, Med. Eng. Phys. 22, 595 (2000).

    Google Scholar 

  • S.F. D'Souza, Appl. Biochem. Biotechnol. 96, 225 (2001).

    Google Scholar 

  • A. Folch, A. Ayon, O. Hurtado, M.A. Schmidt, and M. Toner, J. Biomech. Eng. 121, 28 (1999).

    Google Scholar 

  • A. Folch, B.H. Jo, O. Hurtado, D.J. Beebe, and M. Toner, J. Biomed. Mater. Res. 52, 346 (2000).

    Google Scholar 

  • A. Folch and M. Toner, Biotechnol. Prog. 14, 388 (1998).

    Google Scholar 

  • J.A. Frangos, L.V. Mclntire, and S.G. Eskin, Biotech. Bioeng. 12, 1053, (1988).

    Google Scholar 

  • P. Gerentes, L. Vachoud, J. Doury, and A. Domard, Biomaterials 23, 1295 (2002).

    Google Scholar 

  • F.J.H. Gijsen, A. Goijaerts, F.N. van de Vosse, and J.D. Janssen, J. Rheol 41, 995 (1997).

    Google Scholar 

  • S.M. Gopalan, C. Flaim, S.N. Bhatia, M. Hoshijima, R. Knoell, K.R. Chien, J.H. Omens, and A.D. McCulloch, Biotechnol. Bioeng. 81, 578 (2003).

    Google Scholar 

  • T.S. Girton, T.R. Oegaema, E.D. Grassl, B.C. Isenberg, and R.T. Tranquillo, J. Biomech. Eng. 122, 216 (2000).

    Google Scholar 

  • L.G. Griffith, Ann. N Y Acad. Sci. 961, 83 (2002).

    Google Scholar 

  • L.G. Griffith and G. Naughton, Science 295, 1009 (2002).

    Google Scholar 

  • B.M. Gumbiner, Cell 84, 347 (1996).

    Google Scholar 

  • H. Ho, C.W. Lin, and M.T. Sheu, J. Contr. Rel. 77, 97 (2001).

    Google Scholar 

  • J.A. Hubbel, Cur. Opi. Biot. 10, 123 (1999).

    Google Scholar 

  • R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, and G.M. Whitesides, Biomaterials 20, 2363 (1999).

    Google Scholar 

  • D.M. Knapp, V.H. Barocas, and A.G. Moon, J. Rheol, 41, 971 (1997).

    Google Scholar 

  • G. Knedlitschek, F. Schneider, E. Gottwald, T.H. Schaller, E. Eschbach, and K.F. Weibezahn, J. Biomech. Eng. 121, 35 (1999).

    Google Scholar 

  • J. Lee, J.R. Morgan, R.G. Tompkins, and M.L. Yarmush, FASEB J. 7, 538 (1993).

    Google Scholar 

  • B. Lu, J. Xie, C. Lu, C. Wu, and Y. Wei, Anal. Chem. 67, 83 (1995).

    Google Scholar 

  • N. L'Heureux, S. Paquet, R. Labbe, L. Germain, and F.A. Auger, FASEB Journal 12, 47 (1998).

    Google Scholar 

  • B.K. Mann and J.L. West, Anat. Rec. 263, 367 (2001).

    Google Scholar 

  • K.T. Nguyen and J.L. West, Biomaterials 23, 4307 (2002).

    Google Scholar 

  • L.E. Niklason, Science 286, 1493 (1999).

    Google Scholar 

  • M.J. Powers, D.M. Janigian, K.E. Wack, C.S. Baker, D.B. Stolz, and L.G. Griffith, Tissue Eng. 8, 499 (2002).

    Google Scholar 

  • E.W. Raines, Int. J. Exp. Pathol. 81, 173 (2000).

    Google Scholar 

  • J. Ranieri, R. Bellamkonda, E.J. Bekos, J.A. Gardella, H.J. Mathieu, L. Ruiz, and B. Aebischer, Int. J. Dev. Neurosci. 12, 725 (1994).

    Google Scholar 

  • J.A. Schmidt and A.F. von Recum, Biomaterials. 12, 385 (1991).

    Google Scholar 

  • D.T. Schmidt, T.L. Brooks, S. Mhatre, R.P. Junghans, and M.B., Khazaeli, Biotechniques 14, 1020 (1993).

    Google Scholar 

  • S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A., Kenis, F. Ismagilov, and G.M. Whitesides, Proc. Nat. Acad. Sci. 96, 5545 (1999).

    Google Scholar 

  • W. Tan, R. Krishnaraj, and T.A. Desai, Tissue Eng. 7, 203 (2001).

    Google Scholar 

  • W. Tan and T.A. Desai, Tissue Eng. 9, 255-267 (2003).

    Google Scholar 

  • P. Tengvall, A. Askendal, and I. Lundström, Colloids and Surfaces B: Biointerfaces 20, 51 (2001).

    Google Scholar 

  • T.R. Tranquillo, T.S. Girton, B.A. Bromberek, Triebes, and D.I. Mooradian, Biomaterials 17, 349 (1996).

    Google Scholar 

  • D.R. Walt and V.I. Agayn, Trends Anal. Chem. 13, 425 (1994).

    Google Scholar 

  • G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).

    Google Scholar 

  • Q. Ye, G. Zund, P. Benedikt, S. Jockenhoevel, S.P. Hoerstrup, S. Sakyama, J.A. Hubbel, and M. Turina, Eur. J. Car. Surg. 17, 587 (2000).

    Google Scholar 

  • H. Yuan, W.M. Mullett, and P. Januszszyn, Analyst 126, 1456 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, W., Desai, T.A. Microfluidic Patterning of Cellular Biopolymer Matrices for Biomimetic 3-D Structures. Biomedical Microdevices 5, 235–244 (2003). https://doi.org/10.1023/A:1025764310391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025764310391

Navigation