Skip to main content
Log in

Ultrasensitive Biomems Sensors Based on Microcantilevers Patterned with Environmentally Responsive Hydrogels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An innovative platform was developed for ultrasensitive microsensors based on microcantilevers patterned with crosslinked copolymeric hydrogels. A novel UV free-radical photolithography process was utilized to precisely align and pattern environmentally responsive hydrogels onto silicon microcantilevers, after microcantilevers were fabricated and released. Specifically, a crosslinked poly(methacrylic acid) network containing high amounts of poly(ethylene glycol) dimethacrylate was prepared and investigated. Hydrogels were patterned onto the silicon microcantilevers utilizing a mask aligner to allow for precise positioning. The silicon surface was modified with γ-methacryloxypropyl trimethoxysilane to gain covalent adhesion between the polymer and the silicon. The hydrogels sensed and responded to changes in environmental pH resulting in a variation in surface stress that deflected the microcantilever. The bending response of patterned cantilevers with a change in environmental pH was observed, showing the possibility to construct MEMS/BioMEMS sensors based on microcantilevers patterned with environmentally responsive hydrogels. An extraordinary maximum sensitivity of 1 nm/5×10−5ΔpH was observed, demonstrating the ultrasensitivity of this microsensor platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Bashir, J.Z. Hilt, A.K. Gupta, and N.A. Peppas, Applied Physics Letters 81, 3091 (2002).

    Google Scholar 

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, and B. Jo, Nature 404, 588 (2000a).

    Google Scholar 

  • D.J. Beebe, J.S. Moore, Q. Yu, R.H. Liu, M.L. Kraft, B. Jo, and C. Devadoss, Proc. Natl. Acad. Sci. (USA) 97, 13488 (2000b).

    Google Scholar 

  • P. Bures and N.A. Peppas, Polym. Prepr. 40(1), 345 (1999).

    Google Scholar 

  • M.E. Byrne, K. Park, and N.A. Peppas, Adv. Drug Deliv. Revs. 54, 149 (2002a).

    Google Scholar 

  • M.E. Byrne, D.B. Henthorn, Y. Huang, and N.A. Peppas, in Biomimetic Materials and Design: Interactive Biointerfacial Strategies, Tissue Engineering and Targeted Drug Delivery, edited A.K. Dillow and A. Lowman (Dekker, New York, NY, 2002b), p. 443.

    Google Scholar 

  • M.E. Byrne, E. Oral, J.Z. Hilt, and N.A. Peppas, Polym. Adv. Technol. 13, 798 (2002c).

    Google Scholar 

  • E.L. Florin, V.T. Moy, and H.E. Gaub, Science 264, 415 (1994).

    Google Scholar 

  • C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, Nature 414, 293 (2001).

    Google Scholar 

  • J.Z. Hilt, A.K. Gupta, R. Bashir, and N.A. Peppas, in BioMEMS and Bionanotechnology, MRS Symposium Series, 729, edited by L.P. Lee, J.T. Borenstein, R.P. Manginell, M. Okandan, and P.J. Hesketh (MRS, Pittsburgh, PA, 2002), p. U4.8.1.

    Google Scholar 

  • P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, and H. Schindler, Proc. Natl. Acad. Sci. U.S.A. 93, 3477 (1996).

    Google Scholar 

  • G.U. Lee, L.A. Chrisey, and R.J. Colton, Science 266, 771 (1994).

    Google Scholar 

  • L. Low, S. Seetharaman, K. He, and M.J. Madou. Sensors and Actuators B 67, 149 (2000).

    Google Scholar 

  • A.M. Lowman, T.D. Dziubla, and N.A. Peppas, Polym. Prepr. 38(1), 622 (1997).

    Google Scholar 

  • E. Oral and N.A. Peppas, STP Pharma Sciences 10, 261 (2000).

    Google Scholar 

  • N.A. Peppas and Y. Huang, Pharmaceutical Research 19, 578 (2002).

    Google Scholar 

  • N.A. Peppas, in Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2001), p. 3492.

    Google Scholar 

  • N.A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm. 50, 27 (2000).

    Google Scholar 

  • N.A. Peppas, Curr. Opinion Coll. Interfac. Sci. 2, 531 (1997).

    Google Scholar 

  • N.A. Peppas, J. Bioact. Compat. Polym. 6, 241 (1991).

    Google Scholar 

  • N.A. Peppas, Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, FL, 1986).

    Google Scholar 

  • R. Scott, J.H. Ward, and N.A. Peppas, in Handbook of Pharmaceutical Controlled Release Technology, edited by D.L. Wise, L. Brannon-Peppas, A.M. Klibanov, R. Langer, A.G. Mikos, N.A. Peppas, D.J. Trantolo, G.E. Wnek, and M.J. Yaszemski (Dekker, New York, NY, 2000) p. 47.

    Google Scholar 

  • R.A. Scott and N.A. Peppas, Macromolecules 32, 6139 (1999a).

    Google Scholar 

  • R.A. Scott and N.A. Peppas, Macromolecules 32, 6149 (1999b).

    Google Scholar 

  • R.A. Scott and N.A. Peppas, in Tailored Polymeric Materials for Controlled Delivery Systems, ACS Symposium Series, vol. 709, edited by I. McCulloch and S.W. Shalaby (ACS, Washington, DC, 1999c), p. 129.

    Google Scholar 

  • J.H. Ward, A. Shahar, and N.A. Peppas, Polymer 43, 1745 (2002).

    Google Scholar 

  • J.H. Ward, R. Bashir, and N.A. Peppas, J. Biomed. Mat. Res. 56, 351 (2001).

    Google Scholar 

  • J.H. Ward, R. Gomez, R. Bashir, and N.A. Peppas, Proceed. SPIE 4097, 221 (2000).

    Google Scholar 

  • G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Cote, M.F. Hagan, A.K. Chakraborty, and A. Majumdar, Proc. Natl. Acad. Sci. (USA) 98, 1560 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilt, J.Z., Gupta, A.K., Bashir, R. et al. Ultrasensitive Biomems Sensors Based on Microcantilevers Patterned with Environmentally Responsive Hydrogels. Biomedical Microdevices 5, 177–184 (2003). https://doi.org/10.1023/A:1025786023595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025786023595

Navigation