Skip to main content
Log in

Novel Biobased Polyurethanes Synthesized from Soybean Phosphate Ester Polyols: Thermomechanical Properties Evaluations

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biobased polyurethanes from soybean oil–derived polyols and polymeric diphenylmethane diisocyanate (pMDI) are prepared and their thermomechanical properties are studied and evaluated. The cross-linked biobased polyurethanes being prepared from soy phosphate ester polyols with hydroxyl contents ranging from 122 to 145 mg KOH/g and pMDI within 5 min of reaction time at 150°C in absence of any catalyst show cross-linking densities ranging from 1.8 × 103 to 3.0 × 103 M/m3, whereas glass transition temperatures vary from approximately 69 to 82°C. The loss factor (tan δ) curves show single peaks for all these biobased polyurethanes, thus indicating a single-phase system. The storage moduli (G′) at 30°C range from 4 × 108 to 1.3 × 109 Pa. Upon postcure at 150°C, the thermomechanical properties can be optimized. Cross-link densities are improved significantly for hydroxyl content of 139 and 145 mg KOH/g at curing time of 24 h. Similarly, glass transition temperature (Tg) and storage moduli around and after Tg are increased. Meanwhile, tan δ intensities decrease as result of restricted chain mobility. Longer exposure time (∼24 h) induces thermal degradation, as evidenced by thermogravimetric analysis (TGA). The dynamic mechanical (DMA) analysis shows that postcure at 100°C for times exceeding 24 h also leads to improved properties. However, cross-linking densities are lower compared to postcure carried out at 150°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. D. L. Kaplan (1998) Biopolymers from Renewable Resources, Springer, New York.

    Google Scholar 

  2. G. S. Kumar (1987) Biodegradable Polymers: Prospects and Progress, Marcel Dekker, New York.

    Google Scholar 

  3. S. N. Khot, J. J. Lascala, E. Can, S. S. Morye, G. I. Williams, G. R. Palmese, S. H. Kusefoglu, and R. P. Wool (2001) J. Appl. Polym. Sci. 82, 703–723.

    Google Scholar 

  4. M. W. Formo (1982) in D. Swern Ed., Bailey's Industrial Oil and Fat Products, Vol. 2, 4th ed., Wiley, New York.

    Google Scholar 

  5. J. H. Saunders and K. C. Frisch (1962) Polyurethanes: Chemistry and Technology, Interscience New York, parts I and II.

    Google Scholar 

  6. M. Szycher (1999) Szycher's Handbook of Polyurethanes, CRC Press, Boca Raton, FL.

    Google Scholar 

  7. S. A. Baser and D. V. Khakhar (1993) Cell. Polym. 12, 390–401.

    Google Scholar 

  8. E. N. Frankel and F. L. Thomas (1972) J. Am. Chem. Soc. 49, 10–14.

    Google Scholar 

  9. E. N. Frankel, U. S. Patent 3,787,459.

  10. C. K. Lyon, V. H. Garrett, and E. N. Frankel (1974) J. Am. Chem. Soc. 51, 331–334.

    Google Scholar 

  11. Z. S. Petrovic, A. Guo, and R. Fuller, U.S. Patent 6,107,433.

  12. A. Guo, I. Javni, and Z. Petrovic (2000) J. Appl. Polym. Sci. 77, 467–473.

    Google Scholar 

  13. A. Guo, Y.J. Cho, and Z. S. Petrovic (2000) J. Polym Sci. Part A Polym. Chem. 38, 4062–4069.

    Google Scholar 

  14. K. S. Chian and L. H. Gan (1998) J. Appl. Polym. Sci. 68, 509–515.

    Google Scholar 

  15. Y. H. Hu, Y. Gao, D. N. Wang, C. P. Hu, S. Zu, L. Vanoverloop, and D. Randall (2002) J. Appl. Polym. Sci. 84, 591–597.

    Google Scholar 

  16. V. M. Mannari, Y. Guo, and J. L. Massingill ACS Polymer Preprint (2002) Polym. Mater. Sci. Eng. 86, 383–384.

    Google Scholar 

  17. L. E. Nielsen and R. F. Landel (1994) Mechanical Properties of Polymers and Composites, 2nd ed., Chap. 4, Marcel Dekker, New York.

    Google Scholar 

  18. Z. Petrovic, M. Ilavsky, K. Dusek, M. Vidakovic, I. Javni, and B. Banjanin (1991) J. Appl. Polym. Sci. 42, 391–398.

    Google Scholar 

  19. W. Chang, T. Baranowski, and T. Karalis (1994) J. Appl. Polym. Sci. 51, 1077–1085.

    Google Scholar 

  20. Z. Petrovic, I. Javni, and V. Divjakovic (1998) J. Polym. Sci. Polym. Phys. 36, 221–235.

    Google Scholar 

  21. E. Kontou, G. Spathis, M. Niaounakis, and V. Kefalas (1990) Colloid Polym. Sci. 268, 636–644.

    Google Scholar 

  22. F. Li and R. C. Larock (2000) J. Appl. Polym. Sci. Part B Polym. Phys. 38, 2721–2738.

    Google Scholar 

  23. D. W. Schiering, J. E. Katon, L. T. Drazal, and V. B. Gupta (1987) J. Appl. Polym. Sci. 34, 2367–2375.

    Google Scholar 

  24. B. G. Min, Z. H. Stachurski, and J. H. Hodgkin (1993) Polymer 34, 4908–4912.

    Google Scholar 

  25. K. Ueberreiter and G. Kanig (1950) J. Chem. Phys. 18, 399–406.

    Google Scholar 

  26. O. Persenaire, M. Alexandre, P. Degée, P. Dubois (2001) Biomacromolecules 2, 288–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwan'Isa, JP.L., Mohanty, A.K., Misra, M. et al. Novel Biobased Polyurethanes Synthesized from Soybean Phosphate Ester Polyols: Thermomechanical Properties Evaluations. Journal of Polymers and the Environment 11, 161–168 (2003). https://doi.org/10.1023/A:1026004431534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026004431534

Navigation