Skip to main content
Log in

Phytoextraction capacity of trees growing on a metal contaminated soil

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Phytoremediation is an innovative biological technique to reclaim land contaminated by heavy metals or organic pollutants. In the present work, we studied the ability of five woody species to extract heavy metal (copper, zinc or cadmium) from a polluted soil to their above-ground tissues. Metal content in leaves and twigs was determined. Salix and Betula transferred zinc and cadmium to leaves and twigs, but Alnus, Fraxinus and Sorbus excluded them from their above-ground tissues. None of the species considered transferred copper to the shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adriano D C 1986 Trace elements in the terrestrial environment. Springer Verlag, New York. pp. 533.

    Google Scholar 

  • Alloway B J 1999 Schwermetalle in Böden: Analytik, Konzentration, Wechselwirkungen. Springer Verlag, Heidelberg. pp. 540.

    Google Scholar 

  • Arduini I, Godbold D L and Onnis A 1996 Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol. Plant. 97, 111–117.

    Google Scholar 

  • Atteia O, Dubois J P and Webster R 1994 Geostatistical analysis of soil contamination in the Swiss Jura. Environ. Pollut. 86: 315–327.

    PubMed  Google Scholar 

  • Baize D and Sterckeman T 2001 Of the necessity of knowledge of the natural pedogeochemical background content in the evaluation of the contamination of soils by trace elements. Sci. Total Environ. 264, 127–139.

    PubMed  Google Scholar 

  • Benitez L N and Dubois J P 1999 Evaluation of the selectivity of sequential extraction procedures applied to the speciation of cadmium in soils. Int. J. Environ. An. Ch. 74, 289–303.

    Google Scholar 

  • Blaylock M J and Huang J W 2000 Phytoextraction of metals. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Eds. Raskin I and Ensley B D. pp. 314. JohnWiley and Sons Inc., New York.

    Google Scholar 

  • Brown M T and Wilkins D A 1985 Zinc tolerance in Betula. New Phytol. 99, 91–100.

    Google Scholar 

  • Brun M 1998 Phytoremédiation pour la dépollution des sols et la réhabilitation des sites. Environ. Tech. 173, 42–44.

    Google Scholar 

  • Dahmani-Muller H, van Oort F, Gélie B and Balabane M 2000 Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut. 109, 231–238.

    Article  PubMed  Google Scholar 

  • Dubois J P 1991 Rapport d'analyse concernant la teneur en métaux lourds des sols de la décharge des Abattes (Commune du Locle). Swiss Federal Institute of Technology, Lausanne (in French).

    Google Scholar 

  • FAC Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene 1989 Methoden für die Bodenuntersuchungen. Schriftenreihe der FAC 5, Bern-Liebefeld, Switzerland.

  • Felix H 1997 Field trials for in situ decontamination of heavy meal polluted soils using crops of metal-accumulating plants. J. Plant Nutr. Soil Sc. 160, 525–529.

    Google Scholar 

  • Hammer D, Kayser A and Keller C 2003 Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Management in press.

  • Johnson M S, McNeilly T and Putwain P D 1977 Revegetation of metalliferous mine spoil contaminated by lead and zinc. Environ. Pollut. 12, 261–277.

    Google Scholar 

  • Kabata Pendias A and Pendias H 1992 Trace elements in soils and plants, 2nd Ed., CRC Press, Boca Raton, Florida. pp. 365.

    Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix H R, Gupta S K and Schulin R 2000 Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environ. Sci. Technol. 34, 1778–1783.

    Google Scholar 

  • Keller C, Hammer D, Kayser A and Schulin R 1999 Zinc availability in contaminated soils as a function of plant (Willows) growth and additive (NH4Cl). In Extended Abstracts of the 5th International Conference on the Biogeochemistry of Trace Elements (ICOBTE). 12–15 July 1999, Vienna, Austria.

  • Khan A G 2001 Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ. Int. 26: 417–423.

    PubMed  Google Scholar 

  • Kloke A, Sauerbeck D R and Vetter H 1984 The contamination of plants and soils with heavy metals and the transport of metals in the terrestrial food chains. In Changing Metal Cycles and Human Health. Ed. Nriagu J O. pp. 113–141. Springer Verlag, Berlin.

    Google Scholar 

  • Kopponen P, Utriainen M, Lukkari K, Suntioinen S, Karenlampi L and Karenlampi S 2001 Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ. Pollut. 112, 89–97.

    PubMed  Google Scholar 

  • Kozlov M V, Haukioja E, Bakhtiarov A V and Stroganov D N 1995 Heavy metals in Birch leaves around a nickel-copper smelter at Monchegorsk, north western Russia. Environ. Pollut. 90, 291–299.

    PubMed  Google Scholar 

  • Landberg T and Greger M 1996 Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl. Geochem. 11, 175–180.

    Google Scholar 

  • Lepp N W 1981 Copper. In Effects of Heavy Metal Pollution in Plants, Vol. 1, Effects of Heavy Metals on Plant Function. Ed. Lepp N W. pp. 111–143. Applied Science Publishers, London.

    Google Scholar 

  • Marschner H 1995 Mineral nutrition of higher plants, Academic Press, London. pp. 889.

    Google Scholar 

  • Maurice C and Lagerkvist A 2000 Using Betula pendula and Telephora caryophyllea for soil pollution assessment. J. Soil Contam. 9, 31–50.

    Google Scholar 

  • Mertens J, Luyssaert S, Verbeeren S, Vervaeke P and Lust N 2001 Cd and Zn concentrations in small mammals and willow leaves on discposal facilities for dredged material. Environ. Pollut. 115, 17–22.

    PubMed  Google Scholar 

  • Nissen L R and Lepp N W 1997 Baseline concentrations of copper and zinc in shoot tissues of a range of Salix species. Biomass. Bioenerg. 12, 115–120.

    Google Scholar 

  • OIS 1998 Ordinance Relating to Impacts on the Soil, Swiss Confederation, 1st July 1998, SR 814.12.

  • Punshon T and Dickinson N M 1997 Acclimation of Salix to metal stress. New Phytol. 137, 303–314.

    Google Scholar 

  • Sauerbeck D 1989 Der Transfer von Schwermetallen in die Pflanze. In Beurteilung von Schwermetallkontaminationen im Boden. DECHEMA Fachgespräche Umweltschutz, Stuttgart am Mainz. pp. 281–316.

    Google Scholar 

  • Smith R A H and Bradshaw A D 1979 The use of metal tolerant plant population for the reclamation of metalliferous wastes. J. Appl. Ecol. 16, 595–612.

    Google Scholar 

  • Turner A P and Dickinson N M 1993 Survival of Acer pseudoplatanus L. (sycamore) seedlings on metalliferous soils. New Phytol. 123, 509–521.

    Google Scholar 

  • Vangronsveld J, Sterckx J, Van Assche F and Clijsters H 1995 Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilisation by beringite. J. Geochem. Explor. 52, 221–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Rosselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosselli, W., Keller, C. & Boschi, K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil 256, 265–272 (2003). https://doi.org/10.1023/A:1026100707797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026100707797

Navigation