Skip to main content
Log in

Exact Finite Dimensional Feedback Control via Inertial Manifold Theory with Application to the Chafee–Infante Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

A class of nonlinear parabolic partial differential equations is considered, and an exact finite dimensional feedback control law is designed in order to force the systems to behave in a prescribed way. The feedback law is obtained via inertial manifold theory by reducing the system to finite dimensions. The control achieved is exact, as opposed to approximate, as obtained in a previous work. The result is applied to the Chafee–Infante equation, a one-dimensional scalar reaction-diffusion equation, with distributed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armaou, A., and Christofides, P. D. (2000). Feedback control of the Kuramoto–Sivashinsky equation. Physica D. 137(1/2), 49–61.

    Google Scholar 

  2. Balas, M. J. (1978). Modal control of certain flexible dynamic systems. SIAM J. Control Optim. 16(3), 450–462.

    Google Scholar 

  3. Balas, M. J. (1982). Trends in large space structure control theory: Fondest hopes, wildest dreams. IEEE Trans. Automat. Control AC-27(3), 522–533.

    Google Scholar 

  4. Balas, M. J. (1988). Finite-dimensional controllers for linear distributed parameter systems: Exponential stability using residual mode filters. J. Math. Anal. Appl. 133, 283–296.

    Google Scholar 

  5. Balas, M. J. (1991). Nonlinear finite dimensional control of a class of nonlinear distributed parameter systems using residual mode filters: A proof of local exponential stability. J. Math. Anal. Appl. 162, 63–70.

    Google Scholar 

  6. Banks, H. T. (Ed.)(1992). Control and Estimation in Distributed Parameter Systems, Frontiers in Applied Mathematics, Vol. 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

    Google Scholar 

  7. Bass, R. W., and Zes, D. (1991). Spillover, nonlinearity, and flexible structures. In NASA Workshop on Computational Control of Flexible Aerospace Systems (4th, 1990, Williamsburg, VA), NASA Conference Publications, pp. 1–14.

  8. Bloch, A. M., and Titi, E. S. (1991). On the Dynamics of Rotating Elastic Beams. New Trends in Systems Theory (Genoa, 1990), Progr. Systems Control Theory, Vol. 7, Birkhäuser Boston, Boston, MA, pp. 128–135.

    Google Scholar 

  9. Brunovský, P. (1991). Controlling the dynamics of scalar reaction diffusion equations by finite dimensional controllers. In Kurzhanski, A., and Lasiecka, I. (Eds.), Modelling and Inverse Problems of Control for Distributed Parameter Systems, Lecture Notes in Control and Information Sciences, Vol. 154, Springer-Verlag, Berlin, pp. 22–27.

    Google Scholar 

  10. Chafee, N., and Infante, E. F. (1974). A bifurcation problem for a nonlinear partial differential equation of parabolic type. Applicable Anal. 4, 17–37.

    Google Scholar 

  11. Chow, S.-N., and Lu, K. (1988). Invariant manifolds for flows in Banach spaces. J. Differential Equations 74, 285–317.

    Google Scholar 

  12. Christofides, P. D., and Daoutidis, P. (1997). Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. J. Math. Anal. Appl. 216(2), 398–420.

    Google Scholar 

  13. Debussche, A., and Temam, R. (1993). Inertial manifolds and their dimension. In Anderson, S. I., Anderson, A. E., and Ottason, O. (Eds.), Dynamical Systems, Theory, and Applications, World Scientific.

  14. Foias, C., Sell, G. R., and Temam, R. (1985). Variétés inertielles des équations diférentielles dissipatives. C. R. Acad. Sci. Paris, Série I 301(2), 139–142.

    Google Scholar 

  15. Foias, C., Sell, G. R., and Temam, R. (1988). Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations 73, 309–353.

    Google Scholar 

  16. Foias, C., Sell, G. R., and Titi, E. (1989). Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. Dynam. Differential Equations 1, 199–243.

    Google Scholar 

  17. Fursikov, A. V. (2000). Optimal Control of Distributed Systems. Theory and Applications, Translations of Mathematical Monographs, Vol. 187, American Mathematical Society, Providence, RI.

    Google Scholar 

  18. Gao, H., and Guo, B. (1998). Global dynamics and control of a nonlinear body equation with strong structural damping. Acta Math. Sinica (N.S.) 14(2), 183–190.

    Google Scholar 

  19. Guckenheimer, J., and Holmes, P. J. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, Heidelberg, Berlin.

    Google Scholar 

  20. Gunzburger, M. D., and Hou, L. S. (Eds.) (1988). Flow control and optimization. Int. J. Comput. Fluid Dyn. 11(1/2), Gordon & Breach Science Publishers, Yverdon.

  21. Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, New York.

    Google Scholar 

  22. Kokotovic, P. V., Khalil, H. K., and O'Reilly, J. (1986). Singular Perturbation Methods in Control, Analysis and Design, Academic Press, New York.

    Google Scholar 

  23. Kokotovic, P. V., and Sauer, P. W. (1989). Integral manifolds as a tool for reduced order modeling of nonlinear systems: A synchronous machine case study. IEEE Trans. Circuits Syst. CAS-36, 403.

    Google Scholar 

  24. Lagnese, J. E., Russell, D. L., and White, L. W. (Eds.) (1995). Control and Optimal Design of Distributed Parameter Systems, Proceedings of the workshop held in Minneapolis, Minnesota, November 1992, The IMA Volumes in Mathematics and Its Applications, Vol. 70, Springer-Verlag, New York.

    Google Scholar 

  25. Lions, J.-L. (1968). ContrÔle optimale de systémes gouvernés par des équations aux dérivées partielles, Gauthier–Villars, Paris.

    Google Scholar 

  26. Ly, H. V., Mease, K. D., and Titi, E. S. (1997). Distributed and boundary control of the viscous Burgers' equation. Numer. Funct. Anal. Optim. 18(1/2), 143–188.

    Google Scholar 

  27. Palis, J., and deMelo, W. (1982). Geometric Theory of Dynamical Systems: An Introduction, Springer-Verlag, New York, Heidelberg, Berlin.

    Google Scholar 

  28. Nambu, T. (1982). Feedback stabilization of diffusion equations by a functional observer. J. Differential Equations 43, 257–280.

    Google Scholar 

  29. Nambu, T. (1985). On stabilization of partial differential equations of parabolic type: Boundary observation and feedback. Funkcial. Ekvac. 28, 267–293.

    Google Scholar 

  30. Nambu, T. (1991). Stabilization of parabolic systems via a degenerate nonnegative feedback. J. Dynam. Differential Equations 3(3), 399–422.

    Google Scholar 

  31. Rosa, R. (1995). Approximate inertial manifolds of exponential order. Discrete Contin. Dynam. Systems 1(3), 421–448.

    Google Scholar 

  32. Rosa, R., and Temam, R. (1996). Inertial manifolds and normal hyperbolicity. ACTA Applicandae Mathematicae 45(1), 1–50.

    Google Scholar 

  33. Rosa, R., and Temam, R. (1977). Finite-Dimensional Feedback Control of a Scalar Reaction-Diffusion Equation via Inertial Manifold Theory, Foundations of Computational Mathematics, Rio de Janeiro, Springer, Berlin, pp. 382–391.

    Google Scholar 

  34. Sakawa, Y. (1974). Controllability for partial differential equations of parabolic type. SIAM J. Control 12(3), 389–400.

    Google Scholar 

  35. Sakawa, Y. (1983). Feedback stabilization of linear diffusion systems. SIAM J. Control Optim. 21(5), 667–676.

    Google Scholar 

  36. Sano, H., and Kunimatsu, N. (1995). An application of inertial manifold theory to boundary stabilization of semilinear diffusion systems. J. Math. Anal. Appl. 196, 18–42.

    Google Scholar 

  37. Shvartsman, S. Y., and Kevrekidis, I. G. (1998). Nonlinear model reduction for control of distributed systems: A computer-assisted study, J. AICHE 44(4), 1579–1595.

    Google Scholar 

  38. Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, Vol. 2, Springer-Verlag, New York, Heidelberg, Berlin.

    Google Scholar 

  39. You, Y. (1993). Inertial manifolds stabilization in nonlinear elastic systems with structural damping. In Differential Equations with Applications to Mathematical Physics, Math. Sci. Engrg., Vol. 192, Academic Press, Boston, pp. 335–346.

    Google Scholar 

  40. Taboada, M., and You, Y. (1994). Global dynamics and control of a nonlinear beam equation. In Qualitative Aspects and Applications of Nonlinear Evolution Equations (Trieste, 1993), World Scientific, River Edge, NJ, pp. 109–122.

    Google Scholar 

  41. Xu, C.-Z., and Baillieul, J. (1993). Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Control 38(12), 1774–1765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, R. Exact Finite Dimensional Feedback Control via Inertial Manifold Theory with Application to the Chafee–Infante Equation. Journal of Dynamics and Differential Equations 15, 61–86 (2003). https://doi.org/10.1023/A:1026153311546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026153311546

Navigation