Skip to main content
Log in

The Gaussian Isoperimetric Inequality and Transportation

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Any probability measure on \(\mathbb{R}\) d which satisfies the Gaussian or exponential isoperimetric inequality fulfils a transportation inequality for a suitable cost function. Suppose that W (x) dx satisfies the Gaussian isoperimetric inequality: then a probability density function f with respect to W (x) dx has finite entropy, provided that ∈t\(\smallint \left\| {\nabla {\text{ }}f} \right\|\{ \log _{\text{ + }} \left\| {\nabla {\text{ }}f} \right\|\} ^{1/2} {\text{ }}W(x){\text{ d}}x < \infty \). This strengthens the quadratic logarithmic Sobolev inequality of Gross (Amr. J. Math 97 (1975) 1061). Let μ(dx) = e −ξ(x) dx be a probability measure on \(\mathbb{R}\) d, where ξ is uniformly convex. Talagrand's technique extends to monotone rearrangements in several dimensions (Talagrand, Geometric Funct. Anal. 6 (1996) 587), yielding a direct proof that μ satisfies a quadratic transportation inequality. The class of probability measures that satisfy a quadratic transportation inequality is stable under multiplication by logarithmically bounded Lipschitz densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D. and Ledoux, M.: Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math. 123 (1996), 259–281.

    Google Scholar 

  2. Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probability measures, Annals Probab. 27 (1999), 1903–1921.

    Google Scholar 

  3. Bobkov, S.G. and Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities,J. Funct. Anal. 162 (1999), 1–28.

    Google Scholar 

  4. Bobkov, S.G., Gentil I. and Ledoux, M.: Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 80 (2001), 669–696.

    Google Scholar 

  5. Bobkov, S.G. and Ledoux, M.: From Brunn-Minkowski to Brescamp-Lieb and to logarithmic Sobolev inequalities, Geometric and Funct. Anal. 10 (2000), 1028–1052.

    Google Scholar 

  6. Borell, C.: The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207–216.

    Google Scholar 

  7. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure. Appl. Math. 44 (1991), 375–417.

    Google Scholar 

  8. Caffarelli, L.A.: The regularity of mappings with a convex potential, J. Amr. Math. Soc. 5 (1992), 99–104.

    Google Scholar 

  9. Carlen, E.A. and Carvallo, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Statist. Phys. 67 (1992), 575–608.

    Google Scholar 

  10. Chavel, I.: Riemannian Geometry: A Modern Introduction, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  11. Deuschel, J.-D. and Stroock, D.W.:Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models, J. Funct. Anal. 92 (1990), 30–48.

    Google Scholar 

  12. Dudley, R.M.: Real Analysis and Probability, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1989.

    Google Scholar 

  13. Federer, H.: Geometric Measure Theory, Springer, Berlin, 1969.

    Google Scholar 

  14. Gangbo, W. and McCann, R.J.: The geometry of optimal transportation, Acta Math. 177 (1996), 113–161.

    Google Scholar 

  15. Gromov, M.: Isoperimetric inequalities in Riemannian manifolds, Appendix pp. 114–129; in V.D. Milman and G. Schechtman, (eds) Asymptotic Theory of Finite Dimensional Normed Spaces, Springer Lecture Notes in Mathematics 1200, Springer, Berlin, 1986.

    Google Scholar 

  16. Gross, L.: Logarithmic Sobolev inequalities, Amr. J. Math. 97 (1975), 1061–1083.

    Google Scholar 

  17. Ledoux, M.: Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space,Bull. Sci. Math. 118 (1994), 485–510.

    Google Scholar 

  18. Ledoux, M.: A simple analytic proof of an inequality by P. Buser, Proc. Amr. Math. Soc. 121 (1994), 951–959.

    Google Scholar 

  19. Ledoux, M.: Isopérimétrie et inégalités de Sobolev logarithmiques gaussiennes, C.R. Acad. Sci. Math. 306 (1988), 79–82.

    Google Scholar 

  20. Ledoux, M.: Concentration of Measure and Logarithmic Sobolev Inequalities, pp. 120–216 in Séminaire de Probabilités XXXIII. Lecture Notes in Math., 1709 Springer, Berlin 1999. (http://www-sv.cict.fr/lsp./Ledoux/).

    Google Scholar 

  21. Lindenstrauss, J. and Tzafriri, L.: Classical Banach Spaces I and II, Springer, New York, 1977.

    Google Scholar 

  22. Maz'ja, V.G.: Sobolev spaces, Springer, Berlin, 1985.

    Google Scholar 

  23. McCann, R.J.: A convexity principle for interacting gases, Adv. Math. 128 (1997), 153–179.

    Google Scholar 

  24. McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (1995), 309–323.

    Google Scholar 

  25. Otto, F. and Villani, C.: Generalizations of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361–400.

    Google Scholar 

  26. Pelczy´nski, A. and Wojciechowski, M.: Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm, Studia Math. 107 (1993), 61–100.

    Google Scholar 

  27. Sudakov, V.N. and Tsirel'son, B.S.: Extremal properties of half-spaces for spherically invariant measures, J. Soviet Math. 9 (1978), 9–18.

    Google Scholar 

  28. Talagrand, M.: Transportation cost for gaussian and other product measures, Geometric and Funct. Anal. 6 (1996), 587–600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blower, G. The Gaussian Isoperimetric Inequality and Transportation. Positivity 7, 203–224 (2003). https://doi.org/10.1023/A:1026242611940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026242611940

Navigation