Skip to main content
Log in

Quasicrystals: A Matter of Definition

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is argued that the prevailing definition of quasicrystals, requiring them to contain an axis of symmetry that is forbidden in periodic crystals, is inadequate. This definition is too restrictive in that it excludes an important and interesting collection of structures that exhibit all the well-known properties of quasicrystals without possessing any forbidden symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995), p. 680.

    Google Scholar 

  2. S. Van Smaalen, “Incommensurate crystal structures, ” Cryst. Rev. 4, 79(1995).

    Google Scholar 

  3. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, Cambridge, 1996), p. 31(but see the comment on p. 33).

    Google Scholar 

  4. D. Gratias, “A brief survey of quasicrystallography, ” Ferroelectrics 250, 1(2001).

    Google Scholar 

  5. D. Levine and P. J. Steinhardt, “Quasicrystals I: Definition and structure, ” Phys. Rev. B 34, 596(1986).

    Google Scholar 

  6. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-ranged orientational order and no translational symmetry, ” Phys. Rev. Lett. 53, 1951(1984).

    Google Scholar 

  7. International Union of Crystallography, Acta Cryst. A 48, 922(1992).

    Google Scholar 

  8. F. Denoyer, P. Launois, T. Motsch, and M. Lambert, “On the phase transition mechanism in Al-Cu-Fe: structural analysis of the modulated quasicrystalline and of the microcrystalline states, ” J. Non-Cryst. Solids 153–154, 595(1993).

    Google Scholar 

  9. N. Menguy, M. de Boissieu, P. Guyot, M. Audier, E. Elkaim, and J. P. Lauriat, “Modulated icosahedral Al-Fe-Cu phase: a single crystal X-ray diffraction study, ” Ibid., p. 620.

  10. R. Lifshitz, “The symmetry of quasiperiodic crystals, ” Physica A 232, 633(1996).

    Google Scholar 

  11. T. Janssen, “Crystallography of quasicrystals, ” Acta Cryst. A 42, 261(1986).

    Google Scholar 

  12. A. Katz and D. Gratias, in Lectures on Quasicrystals, F. Hippert and D. Gratias, eds. (Les Editions de Physique, Les Ulis, 1994), p. 247.

    Google Scholar 

  13. L. Elcoro, J. M. Perez-Mato, and R. Withers, “Intergrowth polytypoids as modulated structures: The example of the cation deficient oxides LaTi1−xO3, ” Zeit. Krist. 215, 727(2000).

    Google Scholar 

  14. V. Petříček, A. van der Lee, and M. Evain, “On the use of Crenel functions for occupationally modulated structures, ” Acta Cryst. A 51, 529(1995).

    Google Scholar 

  15. B. Grünbaum and G. C. Shephard, Tilings and Patterns (Freeman, New York, 1987), Sec.10.4.

    Google Scholar 

  16. R. Paredes, J. L. Aragón, and R. A. Barrio, “Nonperiodic hexagonal square-triangle tilings, ” Phys. Rev. B 58, 11990(1998).

    Google Scholar 

  17. Z. H. Mai, L. Xu, N. Wang, K. H. Kuo, Z. C. Jin, and G. Cheng, “Effect of phason strain on the transition of an octagonal quasicrystal to a β-Mn-type structure, ” Phys. Rev. B 40, 12183(1989).

    Google Scholar 

  18. M. Baake, D. Joseph, and P. Kramer, “The Schur rotation as a simple approach to the transition between quasiperiodic and periodic phases, ” J. Phys. A: Math. Gen. 24, L961(1991).

    Google Scholar 

  19. S. Baranidharan and E. S. R. Gopal, “Quasiperiodic tilings with fourfold symmetry, ” Acta Cryst. A 48, 782(1992).

    Google Scholar 

  20. R. Lifshitz, “The square Fibonacci tiling, ” J. Alloys Comp. 342, 186(2002).

    Google Scholar 

  21. M. Hase, M. Egashira, N. Shinya, H. Miyazaki, K. M. Kojima, and S. Uchida, “Optical transmission spectra of two-dimensional quasiperiodic photonic crystals based on Penrose-tiling and octagonal-tiling systems, ” J. Alloys Comp. 342, 455(2002).

    Google Scholar 

  22. K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions, ” IEEE J. Quantum Electron. 35, 1649(1999). K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences, ” Phys. Rev. Lett. 88, 023903(2002).

    Google Scholar 

  23. Y. C. Feng, G. Lu, H. Q. Ye, K. H. Kuo, R. L. Withers, and G. Van Tendeloo, “Experimental evidence for and a projection model of a cubic quasicrystal, ” J. Phys.: Condens. Matter 2, 9749(1990).

    Google Scholar 

  24. P. Donnadieu, H. L. Su, A. Proult, M. Harmelin, G. Effenberg, and F. Aldinger, “From modulated phases to a quasiperiodic structure with a cubic point group and inflation symmetry, ” J. Phys. I France 6, 1153(1996).

    Google Scholar 

  25. P. Donnadieu, “The deviation of the Al6Li3Cu quasicrystal from icosahedral symmetry— A reminisence of a cubic crystal, ” J. Phys. I France 4, 791(1994).

    Google Scholar 

  26. J. Dräger, R. Lifshitz, and N. D. Mermin, “Tetrahedral quasicrystals, ” in Proceedings of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, ed. (World Scientific, Singapore, 1996), p. 72.

    Google Scholar 

  27. H. Selke, U. Vogg, and P. L. Ryder, “New quasiperiodic phase in Al85Cr15, ” Phys. Stat. Sol. A 141, 31(1994).

    Google Scholar 

  28. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    Google Scholar 

  29. N. D. Mermin, Boojums All the Way Through (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lifshitz, R. Quasicrystals: A Matter of Definition. Foundations of Physics 33, 1703–1711 (2003). https://doi.org/10.1023/A:1026247120031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026247120031

Navigation