Skip to main content
Log in

Plasma Deposition of Polymeric Thin Films on Organic Corrosion-Inhibiting Paint Pigments: A Novel Method to Achieve Slow Release

  • Published:
Plasmas and Polymers

Abstract

Slow release of corrosion-inhibitive paint pigments is a great challenge to the paint industry, because of the urgent need to replace chromate-containing pigments. Unfortunately, most effective corrosion inhibitors are too soluble for use in paints. In this paper, we present a novel method to modify selected water-soluble organic inhibitor particles to achieve the purpose of slow release. A plasma polymerization technique was used to deposit an ultrathin polymer film on the surface of the inhibitor particles. Infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectroscopy (TOFSIMS), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), and contact angle data confirmed the successful deposition of the polymer thin film on the inhibitor particles. Using immersion tests and electrochemical techniques, we have demonstrated that the encapsulated water-soluble inhibitor can slowly release into the environment to protect a metal as needed. This technique is a feasible and promising method to promote the replacement of chromate pigments in paints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://archive.metalformingmagazine.com/1995/10/alumin/aluminum.htm

  2. R. G. Buchheit, Electrochem. Soc. Extend. Abstr., 95–2, Abstr. 182, Chicago, IL, 1995.

  3. W. Clark and J. Ramsey, J. Electrochem. Soc. 149, B179(2002).

    Google Scholar 

  4. J. Sinko, Prog. Org. Coat. 42, 267(2001).

    Google Scholar 

  5. EPA Federal Register, National Emission Standards for Hazardous Air Pollutants for Source Categories: Aerospace Manufacturing and Rework Facilities 60, 45947(1995).

    Google Scholar 

  6. W. Qafaoui, Ch. Blanc, N. Pebere, A. Srhiri, and G. Mankowski, J. Appl. Electrochem. 30, 959(2000).

    Google Scholar 

  7. W. Qafsaoui, Ch. Blanc, N. Pebere, H. Takenouti, A. Srhiri, and G. Mankowski, Electrochim. Acta 47, 4339(2002).

    Google Scholar 

  8. C. Chen and C. Lin, Anal Chim. Acta 321, 215(1996).

    Google Scholar 

  9. A. M. S. Abdennabi, A. I. Abdulhadi, and S. Abu-Orabi, Anti-Corros. Meth. Mat. 45, 102(1998).

    Google Scholar 

  10. S. L. Cohen, V. A. Brusic, F. B. Kaufman, G. S. Frankel, S. Motakef, and B. Rush, J. Vac. Sci. Technol. A8, 2417(1990).

    Google Scholar 

  11. A. N. Önal and A. A. AksÜt, Anti-Corros. Meth. Mat. 47, 339(2000).

    Google Scholar 

  12. V. S. Sastri, Corrosion Inhibitors: Principles and Applications, John Wiley, New York (1998), p. 866.

    Google Scholar 

  13. D. Tromans and J. Silva, J. Electrochem. Soc. 143, 458(1996).

    Google Scholar 

  14. http://www.eurobonding.org/Englisch/Oberflaechen.

  15. D. Shi, S. Wang, W. J. van Ooij, L. M. Wang, J. Zhao, and Z. Yu, Appl. Phys. Lett. 78, 1243(2001).

    Google Scholar 

  16. F. Homilius, A. Heilmann, and C. von Borczyskowski, Surf. Coat. Technol. 74, 594(1995).

    Google Scholar 

  17. D. Vollath and D. V. Szobó, J. Nanopart. Res. 1, 235(1999).

    Google Scholar 

  18. J. Janca, P. Stahel, J. Buchta, D. Subedi, F. Krcma, and J. Pryckova, Plasmas Polym. 6, 15(2001).

    Google Scholar 

  19. J. J. Caprari, A. R. Di Sarli, and B. del Amo, Pigment Resin Technol. 29, 16(2000).

    Google Scholar 

  20. M. A. Jackson, J. Protective Coat. Linings 7, 54(1990).

    Google Scholar 

  21. B. del Amo, R. Romagnoli, C. Deya, and J. A. Gonzalez, Prog. Org. Coat. 45, 389(2002).

    Google Scholar 

  22. http://www.resins.com/resins/am/pdf/SC2368.pdf.

  23. R. C. MacQueen, R. R. Miron, and R. D. Granata, J. Coat. Technol., 68, 75(1996).

    Google Scholar 

  24. N. Inagaki, S. Tasaka, and H. Abe, J. Appl. Pol. Sci. 46, 595(1992).

    Google Scholar 

  25. R. Winston Revie, Uhlig's Corrosion Handbook, 2nd Ed., John Wiley, New York (2000), p. 1089.

    Google Scholar 

  26. N. Zhang, Surface modification of micron-size powders by plasma polymerization, Master Thesis, University of Cincinnati, Cincinnati (2000), p. 114.

  27. C. Bayer, M. Karches, A. Matthews, and P. R. von Rohr, Chem. Eng. Technol. 21, 427(1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim J. van Ooij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., van Ooij, W.J. Plasma Deposition of Polymeric Thin Films on Organic Corrosion-Inhibiting Paint Pigments: A Novel Method to Achieve Slow Release. Plasmas and Polymers 8, 297–323 (2003). https://doi.org/10.1023/A:1026389311431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026389311431

Navigation