Skip to main content
Log in

Grain-Scale Modeling of CVD of Polycrystalline Diamond Films

  • Published:
Journal of Materials Synthesis and Processing

Abstract

The evolution of grain size, grain-size distribution, morphological and crystallographic texture, surface roughness, and the contribution of various surface facets to the growth of polycrystalline diamond films is performed by carrying out a series of two-dimensional computer simulations. The films are assumed to grow from a set of randomly oriented, {100}- and {111}-faceted nuclei by the motion of their vertices (the points where the adjoining facets of the same or neighboring grains meet). The vertex velocities are found to be a function of the orientation and the growth rate of the adjoining facets. To quantify the latter, a {100} to {111} growth-rate parameter is used. The results show that the evolution of the grain size and its distribution, surface roughness, morphological and crystallographic texture, and the portion of the film grown from different surface facets are all mutually linked and governed by the magnitude of the growth-rate parameter. The latter can be controlled by the CVD processing conditions, such as the substrate temperature, reactor pressure, mole fraction of carbon-source gas (e.g., CH4, C2H2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Christian, The Theory of Transformation in Metals and Alloys, 2nd edn. (Pergamon Press, Oxford, 1975), pp. 525–553.

    Google Scholar 

  2. A. V. Shubnikov, Dokl. Akad. Nauk SSSR 51, 679 (1946).

    Google Scholar 

  3. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 65, 681 (1949).

    Google Scholar 

  4. Paritosh, D. J. Srolovitz, C. C. Battaile, X. Li, and J. E. Butler, Acta Mater. 47, 2269 (1999).

    Google Scholar 

  5. C. Wild, P. Koidl, W. Muller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Related Mater. 2, 158 (1993).

    Google Scholar 

  6. Y. von Kaenel, J. Stiegler, E. Balnk, O. Chauvet, Ch. Hellwig, and K. Plamann, Phys. Status Solidi 154, 219 (1996).

    Google Scholar 

  7. C. Wild, N. Herres, and P. Koidl, J. Appl. Phys. 68, 973 (1990).

    Google Scholar 

  8. A. van der Drift, Philips Res. Rep. 22, 267 (1967).

    Google Scholar 

  9. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, Appl. Phys. Lett. 61, 1393 (1992).

    Google Scholar 

  10. M. Grujicic and S. G. Lai, J. Mater. Sci. submitted for publication, July 1999.

  11. D. J. Srolovitz, D. S. Dandy, J. E. Butler, C. C. Battaile, and Paritosh, J. Met. 49, 42 (1997).

    Google Scholar 

  12. C. C. Battaile, D. J. Srolovitz, and J. E. Butler, J. Appl. Phys. 82, 6293 (1997).

    Google Scholar 

  13. C. C. Battaile, D. J. Srolovitz, and J. E. Butler, Diamond Related Mater. 6, 1198 (1997).

    Google Scholar 

  14. C. C. Battaile, D. J. Srolovitz, and J. E. Butler, J. Elec. Mater. 26, 960 (1997).

    Google Scholar 

  15. M. Grujicic and S. G. Lai, J. Mater. Sci. 34, 7 (1999).

    Google Scholar 

  16. M. Grujicic and S. G. Lai, J. Mater. Sci., submitted for publication, July 1999.

  17. A. J. Dammers and S. Radelaar, in Proceedings of the CP90 Europhysics Conference on Computational Physics, A. Tenner, ed. (World Scientific, Singapore, 1991), pp. 310–314.

    Google Scholar 

  18. J. M. Thijssen, H. J. Knops, and A. J. Dammers, Phys. Rev. B 45, 8650 (1992).

    Google Scholar 

  19. J. M. Thijssen, Phys. Rev. B 51, 1985 (1995).

    Google Scholar 

  20. S. G. Lai, Ph.D. Thesis, in progress, Clemson University, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Lai, S.G. Grain-Scale Modeling of CVD of Polycrystalline Diamond Films. Journal of Materials Synthesis and Processing 8, 73–85 (2000). https://doi.org/10.1023/A:1026517919085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026517919085

Navigation