Skip to main content
Log in

Ceramic electrolytes and electrochemical sensors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrochemical method involving solid electrolytes has been known as a selective and an accurate way of sensing chemical species in the environment and even in liquid metal for some time. The most successful among the electrochemical sensors are the emission control sensor (λ-sensor) for the automobile engine and the oxygen sensor used in steelmaking, both made of stabilized zirconia. This article presents an overview of basic principles of various types of electrochemical sensors including active (potentiometric) and passive (amperometric) sensors. Recent advances in oxygen (O2), carbon dioxide (CO2) and hydrogen (H2) sensors are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner Naturwissenschaften 31 (1943) 265.

    Google Scholar 

  2. G. Scatchard J. Amer. Chem. Soc. 75 (1953) 2883.

    Google Scholar 

  3. R. A. Rapp and D. A. Shores, “Techniques of Metal Research,” Vol IV, part 2 (Interscience Publisher, 1970) p. 123.

    Google Scholar 

  4. F. A. KrÖger J. Amer. Ceram. Soc. 49(4) (1966) 215.

    Google Scholar 

  5. J. W. Patterson J. Electrochem. Soc. 118 (1971) 1033.

    Google Scholar 

  6. H. NÄfe Soid State Ionics 113–115 (1998) 205.

    Google Scholar 

  7. C. Wagner, in Proc. Intern. Comm. Electrochem. Therm. Kinetics (CITCE), 7th Meeting Lindau (1955) (Butterworth Scientific Publ., London, 1957).

    Google Scholar 

  8. O. Tillement Solid State Ionics 68 (1994) 9.

    Google Scholar 

  9. C. Wagner Z. Phys. Chem. B 21 (1933) 25.

    Google Scholar 

  10. F. O. Koenig J. Phys. Chem. 44 (1940) 101.

    Google Scholar 

  11. C. Wagner, in “Advances in Electrochemistry and Electrochemical Engineering,” edited by Paul Delahay (Interscience Publishers, New York, 1966) Vol. 4, p. 1.

    Google Scholar 

  12. R. W. Ure J. Chem. Phys. 26 (1957) 1363.

    Google Scholar 

  13. J. Short and R. Roy J. Phys. Chem. 67 (1963) 1860.

    Google Scholar 

  14. R. Taylor and H. Schmalzried, ibid. 68 (1964) 2444.

    Google Scholar 

  15. E. Zintl and U. Croatto Z. Anorg. Allgem. Chem. 242 (1939) 79.

    Google Scholar 

  16. C. Tubant H. Reinhold and G. Liebold, ibid. 197 (1931) 225.

    Google Scholar 

  17. E. Barsis and A. Tayor J. Chem. Phys. 45 (1966) 1154.

    Google Scholar 

  18. L. W. Strock Z. Phys. Chem. B 25 (1934) 441; B 31 (1936) 132.

    Google Scholar 

  19. C. Wagner Z. Electrochem. 60 (1956) 4; 63 (1959) 1027.

    Google Scholar 

  20. D. RALEIGHJ. Phys. Chem. Solids. 26 (1965) 329.

    Google Scholar 

  21. R. A. Rapp, “Thermodynamics of Nuclear Materials” (IAEA, Vienna, 1968) p. 559.

    Google Scholar 

  22. C. B. Alcock, “Electromotive Force Measurements in High Temperature Systems” (Inst. of Mining and Metallurgy Publications, London, 1968).

    Google Scholar 

  23. J. W. Patterson E. C. Bogren and R. A. Rapp J. Electrochem. Soc. 114 (1967) 752.

    Google Scholar 

  24. K. O. Hever, ibid. 115 (1968) 830.

    Google Scholar 

  25. Y. Y. Yao and J. T. Kummer J. Inorg. Nucl. Chem. 29 (1967) 2453.

    Google Scholar 

  26. J. B. Goodenough H. Y. P. Hong and J. A. Kafalas Mater. Res. Bull. 11 (1976) 203.

    Google Scholar 

  27. C. Lee S. A. Akbar and C. O. Park Sensors and Actuators. B 80 (2001) 234.

    Google Scholar 

  28. H. Aono E. Sugimoto Y. Sadaoka N. Imanaka and G. Y. Adachi Solid State Ionics 40/41 (1990) 38.

    Google Scholar 

  29. T. Hibio K. Mizutani T. Yamajima and H. Iwahara, ibid. 57 (1992) 303.

    Google Scholar 

  30. D. A. Stevenson N. Jiang R. M Buchanan and F. E. G. Henn, ibid. 62 (1993) 279.

    Google Scholar 

  31. H. Iwahara T. Yamajima Hibino K. Ozaki and H. Suzuki, ibid. 61 (1993) 65.

    Google Scholar 

  32. W. L. Worrell and Q. G. Liu J. Electr. Chem. Interf. Electrochem. 168 (1984) 355.

    Google Scholar 

  33. G. Hotzel and W. Weppner, in Proc. 6th Riso-Intern. Sympo. On Transport-Structure Relations in Fast Ion and Mixed Conductor (Riso Natl. Lab., Roskilde, 1985) p. 401.

    Google Scholar 

  34. N. Miura S. Yao Y. Shimizu and N. Yamazoe Sensors and Actuators B 13/14 (1993) 387.

    Google Scholar 

  35. P. T. Mosely Meas. Sci. Technol. 8 (1997) 223.

    Google Scholar 

  36. F. H. Garzon R. Mukundan and E. L. Broska Solid State Ionics 136/137 (2000) 633.

    Google Scholar 

  37. T. H. Estell and S. N. Flengas J. Electrochem. Soc. 118(12) (1989) 1890.

    Google Scholar 

  38. C. N. Satterfield, “Mass Transfer in Heterogeneous Catalysis” (MIT Press, Cambridge, 1970) p. 30.

    Google Scholar 

  39. J. O. Hirschfielder C. F. Curtiss and R. B. Bird, “Molecular Theory of Gases and Liquids” (Wiley Publ., New York, 1967) p. 14.

    Google Scholar 

  40. H. Dietz Solid State Ionics 6 (1982) 175.

    Google Scholar 

  41. R. Jackson, “Transport in Porous Catalysts” (Elsevier, Amsterdam, 1977) p. 9.

    Google Scholar 

  42. T. Usui Y. Kurumiya K. Nuri and M. Nakazawa Sensors and Actuators 16 (1989) 345.

    Google Scholar 

  43. T. Usui A. Asada M. Nakazawa and H. Osanai J. Electrochem. Soc. 136(2) (1989) 534.

    Google Scholar 

  44. Z. Peng M. Liu ED. Balko Sensors and Actuators B 72 (2001) 35.

    Google Scholar 

  45. H. Schmalzried Z. Phys. Chem. (Frankfurt) 38 (1963) 87.

    Google Scholar 

  46. H. Schmalzried Z. Electrochem. 66 (1962) 572.

    Google Scholar 

  47. W. Weppner,“Solid State Ionics,” edited by M. Balkanski, T. Takahashi and H. L. Tuller (Elsevier Science Pub., 1992) p. 29.

  48. A. Menne and W. Weppner, in Proc. Third Int. Meeting on Chemical Sensors (Cleveland Ohio, 1990) p. 225.

  49. K. Nishio, “The Fundamentals of Automotive Engine Control Sensors” (Fontis Media, SA, 2001) p. 91.

    Google Scholar 

  50. F. Menil V. Coillard and C. Lucat Sensors and Actuators B 67 (2000) 1.

    Google Scholar 

  51. K. Saji H. Kondo T. Takeuchi and I. Igarashi J. Electrochem. Soc. 135(7) (1988) 1686.

    Google Scholar 

  52. J. E. Anderson and Y. B. Graves, ibid. 128(2) (1981) 294.

    Google Scholar 

  53. W. J. Fleming, ibid. 124(1) (1977) 21.

    Google Scholar 

  54. S. Oh Sensors and Actuators B 20 (1994) 33.

    Google Scholar 

  55. H. Tanaka S. Nishimura S. Suzuki M. Miki T. Harada M. Kanamaru S. Ueno and N. Ichikawa, SAE No. 890299 (1989).

  56. B. K. Kim J. H. Lee and H. Kim Solid State Ionics 86–88 (1996) 1079.

    Google Scholar 

  57. W. C. Vassell E. M. Logothesis and R. E. Hetrick, SAE Paper No. 841250 (1984).

  58. S. Soejima and S. Mase, SAE Paper No. 850378 (1985).

  59. T. Sasayama T. Yamauchi R. Byers S. Suzuki and S. Ueno, SAE Paper No. 910501 (1991).

  60. A. D. Colvin J. S. Rankin and K. R. Carduner Sensors and Actuators B 12 (1993) 83.

    Google Scholar 

  61. M. Gauthier and A. Chamberland J. Electrochem. Soc. 124 (1977) 1579.

    Google Scholar 

  62. R. Cote and C. W. Bale, ibid. 131 (1984) 63.

    Google Scholar 

  63. K. Singh P. Ambekar and S. S. Bhoga Solid State Ionics 122 (1999) 191.

    Google Scholar 

  64. J. Liu and W. Weppner, in “Solid State Ionics,” edited by M. Balkanski, T. Takahashi and H. L. Tuller (Elsevier Science Publishers B. V., 1992) p. 61.

  65. M. Holzinger J. Maier and W. Sitte Solid State Ionics 86–88 (1996) 1055.

    Google Scholar 

  66. T. Maruyama S. Sasaki and Y. Saito, ibid. 23 (1987) 107.

    Google Scholar 

  67. T. Lang H.-D. Wiemhofer and W. GÖpel Sensors and Actuators B 34 (1996) 383.

    Google Scholar 

  68. M. A-Porta and R. V. Kumar ibid. 71 (2000) 173.

    Google Scholar 

  69. N. Miura S. Yao Y. Shimizu and N. Yamazoe ibid. 9 (1992) 165.

    Google Scholar 

  70. C. O. Park C. Lee S. A. Akbar and J. Hwang ibid. 88 (2003) 53.

    Google Scholar 

  71. G. Adachi and N. Imanaka in Proc. Symp'on Chemical Sensors II, edited by M. Butler, N. Yamazoe and A. Ricco, J. Electrochem. Soc., Vol. 93, p. 182.

  72. R. Stevens and J. G. P. Binner J. Mater. Sci. 19 (1984) 695.

    Google Scholar 

  73. G. M. Kale and K. T. Jacob J. Mater. Res. 4(2) (1989) 417.

    Google Scholar 

  74. N. Miura S. Yao Y. Shimizu and N. Yamazoe Sensors and Actuators B 9 (1992) 165.

    Google Scholar 

  75. N. Kurita J. Electrochem. Soc. 142(5) (1995) 1552.

    Google Scholar 

  76. T. Norby Solid State Ionics 125 (1999) 1.

    Google Scholar 

  77. H. Iwahara T. Yajima T. Hibino K. Ozaki and H. Suzuki, ibid. 61 (1993) 65.

    Google Scholar 

  78. R. Slade S. D. Flint and N. Singh, ibid. 82 (1995) 135.

    Google Scholar 

  79. T. Takahashi and H. Iwahara Rev. Chim. Miner. 17 (1980) 243.

    Google Scholar 

  80. N. Fukatsu J. Alloys Comp. 231 (1995) 706.

    Google Scholar 

  81. K. D. Kreuer Solid State Ionics 97 (1997) 1.

    Google Scholar 

  82. C. E. Ransley and H. Neufeld J. Inst. Metals 74 (1948) 599.

    Google Scholar 

  83. R. Gee and D. J. Fray Metall. Trans. B 9 (1978) 427.

    Google Scholar 

  84. Y. Zhang and R. A. Rapp, The Ohio State University, Personal Communications.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C.O., Akbar, S.A. & Weppner, W. Ceramic electrolytes and electrochemical sensors. Journal of Materials Science 38, 4639–4660 (2003). https://doi.org/10.1023/A:1027454414224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027454414224

Keywords

Navigation