Skip to main content
Log in

Acetic Acid Catalyzed Carbon Aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We prepared carbon aerogels with a wide range of structural properties and densities using the weak acetic acid as a catalyst. Two series of acetic acid catalyzed carbon aerogels with different dilution of the catalyst and the monomers were investigated accurately. Structural investigation was performed via (U)SAXS, gas sorption and SEM. The pore and particle size can be tailored according to the used amount of monomers and catalyst, respectively. The connectivity of the primary particles turned out to be exceptionally high, as was found from SEM photographs and is reflected in a large elastic modulus and a high electrical conductivity. IR transmission spectra of the acetic acid catalyzed resorcinol-formaldehyde aerogels indicate the existence of a carbonyl group within the aerogel network, which may be important for the structural development of the this gel. As no metal containing catalyst was employed, the resulting carbon aerogels are extremely pure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Bonsal, J.B. Donnet, and H.F. Stoeckli, Active Carbon (Marcel Dekker, New York, 1988).

    Google Scholar 

  2. Pekala et al., Electrochemical behaviour of carbon aerogels derived from different precursors, Mat. Res. Soc. Symp. Proc. 393, 413 (1995)

    Google Scholar 

  3. S.T. Mayer, R.W. Pekala, and J.L. Kaschmitter, J. Electrochem. Soc. 140, 446 (1993).

    Google Scholar 

  4. R. Saliger, U. Fischer, C. Herta, and J. Fricke, High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225, 81 (1998).

    Google Scholar 

  5. H. Pröbstle, C. Schmitt, and J. Fricke, Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources 105, 189 (2002).

    Google Scholar 

  6. R.W. Pekala and F.M. Kong, Revue de Physique Appliquée, Colloque C4, Supplément au no. 4, Tome 24 (April 1989).

  7. V. Bock, A. Emmerling, and J. Fricke, Influence of monomer and catalyst concentration on RF and carbon aerogel structure, J. of Non-Crystalline Solids 225, 69 (1998).

    Google Scholar 

  8. R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, and J. Fricke, Structure of carbon aerogels near the gelation limit of the resorcinol-formaldhyde precursor, J. Non-Cryst. Solids 225, 41 (1998).

    Google Scholar 

  9. R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Geis, and J. Fricke, Carbon aerogels from dilute catalysis of resorcinol with formaldehyde, J. Non-Cryst. Solids 221, 144 (1997).

    Google Scholar 

  10. M.W. Droege, US patent no. 5,945,084, issued 31 (August 1999).

  11. A. Knop and W. Scheib, Chemistry and Application of Phenolic Resins (Springer-Verlag, 1979).

  12. O. Barbieri, F. Ehrburger-Dolle, T.P. Rieker, G.M. Pajonk, N. Pinto, and A.V. Rao, Small-angle scattering of a new series of organic aerogels, J. Non-Cryst. Solids 285, 109 (2001).

    Google Scholar 

  13. R.W. Pekala and C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270, 3 (1992).

    Google Scholar 

  14. R.W. Pekala, C.T. Alviso, X. Lu, J. Groß, and J. Fricke, J. Non-Cryst. Solids 188, 34 (1995).

    Google Scholar 

  15. V. Bock, O. Nilsson, J. Blumm, and J. Fricke, J. Non-Cryst. Solids 185, 233 (1995).

    Google Scholar 

  16. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982).

    Google Scholar 

  17. J.H. de Boer, J. Coll. Interf. Sci. 21, 405 (1966).

    Google Scholar 

  18. G. Reichenauer, A. Emmerling, J. Fricke, and R.W. Pekala, Microporosity in carbon aerogels, J. Non-Cryst. Solids 225, 210 (1998).

    Google Scholar 

  19. O. Glatter and O. Kratky, Small-Angle X-ray Scattering (Academic Press Inc., London, 1982).

    Google Scholar 

  20. A. Emmerling and J. Fricke, J. Non-Cryst. Solids 145, 113 (1992).

    Google Scholar 

  21. A. Guinier, Annalen der Physik 12, 161 (1939).

    Google Scholar 

  22. A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (John Wiley &; Sons, New York, 1955).

    Google Scholar 

  23. J. Groß and J. Fricke, J. Non-Cryst. Solids 145, 217 (1992).

    Google Scholar 

  24. X. Lu et al., J. Non-Cryst. Solids 188, 226 (1995).

    Google Scholar 

  25. R.W. Pekala, C.T. Alviso, and J.D. LeMay, J. Non-Cryst. Solids 125, 67 (1990).

    Google Scholar 

  26. R. Petricevic, M. Glora, A.Möginger, and J. Fricke, Skin formation on RF aerogel sheets, J. Non-Cryst. Solids 285, 272 (2001).

    Google Scholar 

  27. V. Bock, A. Emmerling, R. Saliger, and J. Fricke, Structural investigation of resorcinol formaldehyde and carbon aerogels using SAXS and BET, J. Porous Mater 4, 287 (1997).

    Google Scholar 

  28. M.M. Dubinin and L.V. Radushkevic, Proc. Acad. Sci. USSR 55, 331 (1947).

    Google Scholar 

  29. M.M. Dubinin and H.F. Stöckli, J. Colloid Interface Sci. 75, 34 (1980).

    Google Scholar 

  30. D.A. Cadenberg, J.F. Danielli, and M.D. Rosenberg, Progress in Surface and Membrane Science (Academic Press, London, 1975), Vol. 9.

    Google Scholar 

  31. G. Reichenauer, C. Stumpf, and J. Fricke, J. Non-Cryst. Solids 186, 334 (1995).

    Google Scholar 

  32. J. Kuhn, R. Brandt, H. Mehling, R. Petricevic, and J. Fricke, J. Non-Cryst. Solids 225, 58 (1998).

    Google Scholar 

  33. W. Li, A. Lu, and S. Guo, Characterization of the microstructures of organic and carbon aerogels based upon mixed cresolformaldehyde, Carbon 39(13) 1989 (2001).

    Google Scholar 

  34. H. Günzler and H. Böck, Infrarot Spektroskopie (Verlag Chemie, Weinheim, 1983).

    Google Scholar 

  35. R.T. Morrison and R.N. Boyd, Organic Chemistry, 6th edition (Prentice-Hall Inc., New Jersey, 1992), pp. 726, 735 and 1093.

    Google Scholar 

  36. C.I. Merzbacher, S.R. Meier, J.R. Pierce, and M.L. Korwin, Carbon aerogels as broadband non-reflective materials, J. Non-Cryst. Solids 285, 210 (2001).

    Google Scholar 

  37. J. Wang, M. Glora, R. Petricevic, R. Saliger, H. Proebstle, and J. Fricke, Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldhyde, J. Porous Mater. 8, 159 (2001).

    Google Scholar 

  38. H.R. Christen, Chemie (11. Aufl., Aarau, 1977).

  39. E. Jander and G. Blasius, Einführung in das anorganischchemische Praktikum (13. Auflage, Hirzel Verlag, Stuttgart, 1990).

    Google Scholar 

  40. Holleman, Wiberg, Lehrbuch der Anorganischen Chemie (Berlin, 1995), p. 438.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, R., Petricevic, R., Pröbstle, H. et al. Acetic Acid Catalyzed Carbon Aerogels. Journal of Porous Materials 10, 171–178 (2003). https://doi.org/10.1023/A:1027486401135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027486401135

Navigation