Skip to main content
Log in

The Fractal Dimension as a Measure of the Quality of Habitats

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Habitat fragmentation produces isolated patches characterized by increased edge effects from an originally continuous habitat. The shapes of these patches often show a high degree of irregularity: their shapes deviate significantly from regular geometrical shapes such as rectangular and elliptical ones. In fractal theory, the geometry of patches created by a common landscape transformation process should be statistically similar, i.e. their fractal dimensions and their form factors should be equal. In this paper, we analyze 49 woodlot fragments (Pinus sylvestris L.) in the Belgian Kempen region to study the direct relationship between a transformation process and the concomitant patch geometry. Although the fractal dimension of the woodlots is scattered (i.e. they are not statistically similar), the perimeter-area relation of the fragments is characterized by a single, ‘dimension-like’ exponent. This exponent suggests a certain shape homogeneity among the patches, which is confirmed by the absence of hierarchical levels associated with sharp increases of the fractal dimension at scale transitions. The interaction of different natural (soil factor, vegetation type) and anthropogenic (afforestation, urbanization) processes during patch development is assumed to have generated this feature. Comparison of the area and perimeter fractal dimension with an ecological index for habitat quality, the interior-to-edge ratio, shows that the fractal dimension is suitable for predicting interior habitat presence, which is more likely for patches with smooth perimeters and compact areas. The ratio of the area to the perimeter fractal dimension confirms this observation, with high values for high interior-to-edge ratios, characteristic for regularly shaped patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Avnir, D., O. Biham, D. Lidar and O. Malcai (1998). Is the geometry of nature fractal? Science 279: 39-40.

    Article  Google Scholar 

  • Baskent, E.Z. and G.A. Jordan (1995). Characterizing spatial structure of forest landscapes. Canadian Journal of Forest Research 25: 1830-1849.

    Google Scholar 

  • Bogaert, J. (2001). Size dependence of interior-to-edge ratios: size predominates shape. Acta Biotheoretica 49: 121-123.

    Article  Google Scholar 

  • Bogaert, J., P. Van Hecke, D. Salvador-Van Eysenrode and I. Impens (1998). Quantifying habitat edge for nature reserve design. Coenoses 13: 131-136.

    Google Scholar 

  • Bogaert, J., P. Van Hecke and I. Impens (1999a). A reference value for the interior-to-edge ratio of isolated habitats. Acta Biotheoretica 47: 67-77.

    Article  Google Scholar 

  • Bogaert, J., P. Van Hecke, R. Moermans and I. Impens (1999b). Twist number statistics as an additional measure of habitat perimeter irregularity. Environmental and Ecological Statistics 6: 275-290.

    Article  Google Scholar 

  • Bogaert, J., R. Moermans and P. Van Hecke (2000a). Fractal dimension of patches based on area and perimeter: evaluation of the non-regression technique. Topics in Ecology: structure and function in plants and ecosystems, R. Ceulemans, J. Bogaert, G. Deckmyn, I. Nijs (Eds), University of Antwerp, Antwerp, 51-59.

    Google Scholar 

  • Bogaert, J., R. Rousseau, P. Van Hecke and I. Impens (2000b). Alternative area-perimeter ratios for measurement of 2D shape compactness of habitats. Applied Mathematics and Computation 111: 71-85.

    Article  Google Scholar 

  • Bogaert, J., P. Van Hecke, D. Salvador-Van Eysenrode and I. Impens. (2000c). Landscape fragmentation assessment using a single measure. Wildlife Society Bulletin 28: 875-881.

    Google Scholar 

  • Bogaert, J., D. Salvador-Van Eysenrode, I. Impens and P. Van Hecke (2001a). The interior-to-edge breakpoint distance as a guideline for nature conservation policy. Environmental Management 27: 493-500.

    Article  Google Scholar 

  • Bogaert, J., D. Salvador-Van Eysenrode, P. Van Hecke and I. Impens (2001b). Geometrical considerations for evaluation of reserve design. Web Ecology 2: 65-70.

    Google Scholar 

  • Bribiesca, E. (1997). Measuring 2-D shape compactness using the contact perimeter. Computers and Mathematics with applications 33: 1-9.

    Article  Google Scholar 

  • Burrough, P.A. (1981). Fractal dimensions of landscapes and other environmental data. Nature, 294:240-242

    Article  Google Scholar 

  • Cheng, Q. (1995). The perimeter-area fractal model and its application in geology. Mathematical Geology, 27: 69-82.

    Article  Google Scholar 

  • Collinge, S.K. (1996). Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landscape and Urban Planning 36: 59-77.

    Article  Google Scholar 

  • Davidson, C. (1998). Issues in measuring landscape fragmentation. Wildlife Society Bulletin 26: 32-37.

    Google Scholar 

  • De Blust, G., A. Froment, E. Kuyken, L. Nef and R. Verheyen (1985). Biologische Waarderingskaart van België: algemeen verklarende tekst. Ministerie van Volksgezondheid en van het Gezin, Instituut voor Hygiëne en Epidemiologie, Coördinatiecentrum van de Biologische Waarderingskaart.

  • De Cola, L. (1989). Fractal analysis of a classified Landsat scene. Photogrammetric Engineering and Remote Sensing 55: 601-610.

    Google Scholar 

  • De Cola, L. and N.S.-N. Lam (1993). Introduction to fractals in geography. Fractals in geography, N. S.-N. Lam, L. De Cola (Eds), PTR Prentice Hall, New Jersey, 3-22.

    Google Scholar 

  • Feder, J. (1988). Fractals, Plenum Press, New York.

    Google Scholar 

  • Forman, R.T.T. (1981). Interaction among landscape elements: a core of landscape ecology. Proceedings of the International Congress of the Netherlands Society for Landscape Ecology, S.P. Tjallingii, A.A. de Veer (Eds), Centre for Agricultural Publishing and Documentation, Wageningen, 35-47.

    Google Scholar 

  • Forman, R.T.T. (1990). Ecologically sustainable landscapes: the role of spatial configuration. Changing landscapes: an ecological perspective, I.S. Zonneveld, R.T.T. Forman (Eds), Springer-Verlag, New York, 261-278.

    Google Scholar 

  • Forman, R.T.T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge.

    Google Scholar 

  • Forman, R.T.T. and M. Godron (1981). Patches and structural components for a landscape ecology. BioScience 31: 733-740.

    Article  Google Scholar 

  • Forman, R.T.T. and M. Godron (1986). Landscape Ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Frohn, R.C. (1998). Remote sensing for landscape ecology: new metric indicators for monitoring, modeling, and assessment of ecosystems. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Imre, A. (1992). Problems of measuring the fractal dimension by the slit-island method. Scripta Metallurgica 27: 1713-1716.

    Article  Google Scholar 

  • Imre, A.R. (2001). About the ranking of isolated habitats with different shapes: an interior-to-edge ratio study. Acta Biotheoretica 49: 115-120.

    Article  Google Scholar 

  • Kenkel, N.C. and D.J. Walker (1996). Fractals in the biological sciences. Coenoses 11: 77-100.

    Google Scholar 

  • Krummel, J.R., R.H. Gardner, G. Sugihara, R.V. O'Neill and P.R. Coleman (1987). Landscape patterns in disturbed environment. Oikos 48: 321-324.

    Google Scholar 

  • LaGro, J. Jr. (1991). Assessing patch shape in landscape mosaics. Photogrammetric Engineering and Remote Sensing 57: 285-293.

    Google Scholar 

  • Laurance, W.L. (2000). Do edge effects occur over large spatial scales? Trends in Ecology and Evolution 15: 134-135.

    Article  Google Scholar 

  • Lawrence, R.L. and W.J. Ripple (1996). Determining patch perimeters in raster image processing and geographic information systems. International Journal of Remote Sensing 17: 1255-1259.

    Google Scholar 

  • Li, B.-L. (2000a). Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecological Modelling 132: 33-50.

    Article  Google Scholar 

  • Li, B.-L. (2000b). Why is the holistic approach becoming so important in landscape ecology? Landscape and Urban Planning 50: 27-41.

    Article  Google Scholar 

  • Lovejoy, S. (1982). Area-perimeter relation for rain and cloud areas. Science 216: 185-187.

    Google Scholar 

  • Mandelbrot, B.B. (1982). The fractal geometry of nature. Freeman, San Francisco.

    Google Scholar 

  • Mandelbrot, B.B., D.E. Passoja and A.J. Paullay (1984). Fractal character of fracture surfaces of metals. Nature 308: 721-722.

    Article  Google Scholar 

  • McGarigal, K. and B. Marks (1995). FRAGSTATS: Spatial analysis program for quantifying landscape structure. USDA Forest Service General Technical Report PNW-GTR-351.

  • Meltzer, M.I. and H.M. Hastings (1992). The use of fractals to assess the ecological impact of increased cattle population: case study from the Runde Communal Land, Zimbabwe. Journal of Applied Ecology 29: 635-646.

    Article  Google Scholar 

  • Milne, B.T. (1988). Measuring the fractal geometry of landscapes. Applied Mathematics and Computation 27: 67-79.

    Article  Google Scholar 

  • Milne, B.T. (1991). Lessons from applying fractal models to landscape patterns. Quantitative methods in landscape ecology: the analysis and interpretation of landscape heterogeneity, M.G. Turner, R.H. Gardner (Eds), Springer-Verlag, New York, 199-235.

    Google Scholar 

  • Olsen, E.R., R.D. Ramsey and D.S. Winn (1993). A modified fractal dimension as a measure of landscape diversity. Photogrammetric Engineering and Remote Sensing 59: 1517-1520.

    Google Scholar 

  • O'Neill, R.V., J.R. Krummel, R.H. Gardner, G. Sugihara, B. Jackson, D.L. DeAngelis, B.T. Milne, M.G. Turner, B. Zygmunt, S.W. Christensen, V.H. Dale and R.L. Graham (1988). Indices of landscape pattern. Landscape Ecology 1: 153-162.

    Article  Google Scholar 

  • O'Neill, R.V., K.H. Riiters, J.D. Wickham and K.B. Jones (1999). Landscape pattern metrics and regional assessment. Ecosystem Health 5: 225-233.

    Article  Google Scholar 

  • Peterson, G.W. and R.E. Turner (1994). The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. Estuaries 17: 235-262.

    Article  Google Scholar 

  • Russ, J.C. (1994). Fractal Surfaces. Plenum Press, New York.

    Google Scholar 

  • Saunders, D.A., R.J. Hobbs and C.R. Margules (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 18-32.

    Article  Google Scholar 

  • Serra, J. (1982). Image analysis and mathematical morphology. Academic Press, London.

    Google Scholar 

  • Sugihara, G. and R.M. May (1990) Applications of fractals in ecology. Trends in Ecology and Evolution 5: 79-86.

    Article  Google Scholar 

  • Turner, M.G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20: 171-197.

    Article  Google Scholar 

  • Urban, D.L. (1993). Landscape ecology and ecosystem management. Sustainable ecological systems: implementing an ecological approach to land management, W.W. Covington, L.F. DeBano (Eds), USDA Forest Service, GTR-RM-247, 127-136.

  • Van Miegroet, M. (1976). Van bomen en bossen: deel 1. E. Story Scientia PVBA, Gent, 630 p. (in Dutch).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.R. Imre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imre, A., Bogaert, J. The Fractal Dimension as a Measure of the Quality of Habitats. Acta Biotheor 52, 41–56 (2004). https://doi.org/10.1023/B:ACBI.0000015911.56850.0f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACBI.0000015911.56850.0f

Navigation