Skip to main content
Log in

Complete Biological Dehalogenation of Chlorinated Ethylenes in Sulfate Containing Groundwater

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The ability of dehalogenating bacteria to compete with sulfate reducing bacteria forelectron donor was studied in microcosms that simulated groundwater contaminatedwith both chlorinated ethylenes and fuel hydrocarbon compounds. Results demonstratethat reductive dehalogenation of perchloroethylene to ethylene can proceed in thepresence of >100 mg l-1 sulfate. The hydrogen concentration, which was2.5 nM in the presence of approximately 150 mg l-1 sulfate and in the absence of chlorinated compounds, decreased to 0.7 nM during the dechlorination oftrichloroethylene and increased to 1.6 nM during the dechlorination ofcis-dichloroethylene and vinyl chloride. With only sediment associated donor(``historical'' donor) present, dechlorination of trichloroethylene proceededslowly to ethylene (on a time scale of several years). Addition of toluene, amodel hydrocarbon compound, stimulated dechlorination indirectly. Toluenedegradation was rapid and linked to sulfate utilization, and presumably formedfermentable substrates that served as hydrogen donors. Dehalogenation wasinhibited in soil free microcosms containing 5 mM sulfide, but inhibition wasnot observed when either aquifer sediment or 5 mM ferrous chloride was added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bagley DM & Gossett JM (1990) Tetrachloroethene transforma-tion to trichloroethene and cis-1,-2-dichloroethene by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 56: 2511-2516

    Google Scholar 

  • Beller HR & Reinhard M (1995) The role of iron in enhancing anaerobic toluene degradation in sulfate-reducing enrichment cultures. Microbial Ecol. 30: 105-114

    Google Scholar 

  • Beller HR, Spormann AM, Sharma PK, Cole JR & Reinhard M (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl. Environ. Micro-biol. 62: 1188-1196

    Google Scholar 

  • Boopathy R & Peters R (2001) Enhanced biotransformation of tri-chloroethylene under mixed electron accepting conditions. Curr. Microbiol. 42: 134-138

    Google Scholar 

  • Bouwer EJ & McCarty PL (1983) Transformations of 1-and 2 carbon halogenated aliphatic organic compounds under meth-anogenic conditions. Appl. Environ. Microbiol. 45: 1286-1294

    Google Scholar 

  • Cabirol N, Jacob F, Perrier J, Fouillet B & Chambon P (1998) Interaction between methanogenic and sulfate-reducing microor-ganisms during dechlorination of a high concentration of tetra-chloroethylene. J. Gen. Appl. Microbiol. 44: 297-301

    Google Scholar 

  • Committee on Ground Water Cleanup Alternatives (Kavanaugh M.C., Chair) (1994) Alternatives for Ground Water Cleanup, National Academy Press, Washington, D.C.

    Google Scholar 

  • De Bruin WP, Kotterman MJJ, Posthumus MA, Schraa G & Zehnder AJB (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl. Environ. Microbiol. 58: 1996-2000

    Google Scholar 

  • Edwards EA, Wills LE, Reinhard M & Grbic-Galic D (1992) Anaerobic degradation of toluene and xylene by aquifer mi-croorganisms under sulfate-reducing conditions. Appl. Environ. Microbiol. 58: 794-800

    Google Scholar 

  • ESTCP (2001)http://www.estcp.org/documents/techdocs/Rabitt_Update.pdf.

  • Fennell DE, Gossett JM& Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ. Sci. Technol. 31: 918-926

    Google Scholar 

  • Gossett JM(1987) Measurement of henry's law constants for C 1 and C 2 chlorinated hydrocarbons. Environ. Sci. Technol. 21: 202-208

    Google Scholar 

  • Grbic-Galic D & Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254-260

    Google Scholar 

  • Harkness MR, Bracco AA, Brennan MJ, Jr., Deweerd KA & Spivack JL (1999) Use of bioaugmentation to stimulate com-plete reductive dechlorination of trichloroethene in Dover soil columns. Environ. Sci. Technol. 33: 1100-1109

    Google Scholar 

  • He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM & Löffler FE (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ. Sci. Techn. 36: 3945- 3952

    Google Scholar 

  • Holliger C, Schraa G, Stams AJM & Zehnder AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59: 2991-2997

    Google Scholar 

  • Holliger C, Wohlfarth G & Diekert G (1998) Reductive dechlor-ination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22: 383-398

    Google Scholar 

  • Lee MD, Odom JM & Buchanan Jr. RJ (1998) New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Ann. Rev. Microbiol. 52: 423-452

    Google Scholar 

  • Löffler FE, Tiedje JM & Sanford RA (1999) Fraction of elec-trons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl. Environ. Microbiol. 65: 4049-4056

    Google Scholar 

  • Lovley DR & Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52: 2993-3004

    Google Scholar 

  • Lu XX, Tao S, Bosma T & Gerritse J (2001) Characteristic hydrogen concentrations for various redox processes in batch study. J. Environ. Sci. Health Part A-Toxic/Hazardous Subst. & Environ. Eng. 36: 1725-1734

    Google Scholar 

  • Maymo-Gatell X, Chien YT, Gossett JM & Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetra-chloroethene to ethane. Science 276: 1568-1571

    Google Scholar 

  • Mazur CS & Jones WJ (2001) Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environ. Sci. Techn. 35: 4783-4788

    Google Scholar 

  • Pavlostathis SG & Zhuang P (1993) Reductive dechlorination of chloroalkenes in microcosms developed with a field contaminated soil. Chemosphere 27: 585-595

    Google Scholar 

  • Sewell GW & Gibson SA (1991) Stimulation of the reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene. Environ. Sci. & Technol. 25: 982-984

    Google Scholar 

  • Stumm W & Morgan JJ (1996) Aquatic Chemistry, third edition. John Wiley, New York

    Google Scholar 

  • Yang Y & McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32: 3591-3597

    Google Scholar 

  • Yang Y & McCarty PL (2000) Biomass, oleate, and other possible substrates for chloroethene reductive dehalogenation. Bioremediation J. 4: 125-133.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoelen, T., Reinhard, M. Complete Biological Dehalogenation of Chlorinated Ethylenes in Sulfate Containing Groundwater. Biodegradation 15, 395–403 (2004). https://doi.org/10.1023/B:BIOD.0000044592.33729.d6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000044592.33729.d6

Navigation