Skip to main content
Log in

Dissolved organic matter under native Cerrado and Pinus caribaea plantations in the Brazilian savanna

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The transformation of native Cerrado into Pinus caribaea Morelet plantations changes the DOM dynamics including changed rates of mineralisation, denitrification, and C export to the groundwater. To examine the differences in quantity, temporal dynamics, and quality of DOM between Cerrado and Pine plantations we collected rainfall, throughfall, stemflow, litter leachate (under pine only) and soil solution at 15, 80, and 200 cm depth in weekly intervals during the rainy seasons 1997/98 and 1998/99. We determined total dissolved organic carbon (DOC) concentrations and assessed DOM quality by separating hydrophilic and hydrophobic fractions and by NMR analysis of organic layer extracts. The rainfall had a mean DOC concentration of 2.6 mg L−1. The mean concentrations of DOC in the throughfall of the pine plantations (5.0–10.5 mg L−1) were significantly above those of Cerrado (2.6–4.9 mg L−1). During the first part of the rainy seasons (October–December), the concentrations of DOC in the soil solution (15–200 cm depth) under Cerrado and pine did not differ significantly. During the second part of both rainy seasons (January–April), the concentrations of DOC in the soil solution under Cerrado (4.4–5.1 mg L−1) exceeded those under PI (1.4–2.7 mg L−1). Possible explanations of the latter include higher DOM input into the Cerrado soil and a stronger retention and/or faster mineralisation of the pine DOM than of the Cerrado DOM in the mineral soil. As the structural composition of DOM extracted from the organic layer under Cerrado and pine did not differ significantly, faster mineralisation was the most likely explanation for partly lower DOC concentrations in the soil solution under pine than under Cerrado. This assumption was supported by increasing contributions of hydrophobic DOM to total DOM with increasing depth under pine while, under Cerrado, the DOM composition did not change with depth. The reason for DOM mineralisation under pine was probably the higher N availability because total N concentrations were 11–23 times higher under pine than under Cerrado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae M.O., Talbot R.W., Andreae T.W. and Harriss R.C. 1988. Formic and acetic acid over the central Amazon region, Brazil. 1. Dry season. J. Geophys. Res. 93D: 1616-1624.

    Google Scholar 

  • Andreae M.O., Talbot R.W., Berresheim H. and Beecher K.M. 1990. Precipitation chemistry in central Amazonia. J. Geophys. Res. 95D: 16987-16999.

    Google Scholar 

  • Archibold O.W. 1995. Ecology of World Vegetation. Chapman and Hall, London, 510 p.

    Google Scholar 

  • Baldock J.A. and Nelson P.N. 2000. Soil organic matter. In: Sumner M.E. (ed.), Handbook of Soil Science. CRC Press, Boca Raton, FL, USA, pp. B25-B84.

    Google Scholar 

  • Boissier J.M. and Fontvieille D. 1993. Biodegradable dissolved organic carbon in seepage waters from two forest soils. Soil Biol. Biochem. 25: 1257-1261.

    Google Scholar 

  • Buurman P. 1985. Carbon/sesquioxide ratios in organic complexes and the transition albic-spodic horizon. J. Soil Sci. 36: 255-260.

    Google Scholar 

  • Chebbi A. and Carlier P. 1996. Carboxylic acids in the troposphere, occurence, sources, and sinks: a review. Atmos. Environ. 30: 4233-4249.

    Google Scholar 

  • Christ M.J. and David M.B. 1994. Fractionation of dissolved organic carbon in soil water: effects of extraction and storage methods. Commun. Soil Sci. Plant Anal. 25: 3305-3319.

    Google Scholar 

  • Christ M.J. and David M.B. 1996. Temperature and moisture effects on the production of dissoved organic carbon in a spodosol. Soil Biol. Biochem. 28: 1191-1199.

    Google Scholar 

  • Colina-Tejada A., Amblès A. and Jambu P. 1996. Nature and origin of soluble lipids shed into the soil by rainwater leaching a forest cover of Pinus maritima sp. Eur. J. Soil Sci. 47: 637-643.

    Google Scholar 

  • Cronan C.S. and Aiken G.R. 1985. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta. 49: 1697-1705.

    Google Scholar 

  • Dai K.H., David M.B. and Vance G.F. 1996. Characterization of solid and dissolved carbon in a spruce-fir Spodosol. Biogeochemistry 35: 339-365.

    Google Scholar 

  • Dalva M. and Moore T.R. 1991. Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry 15: 1-19.

    Google Scholar 

  • Easthouse K.B., Mulder J., Christophersen N. and Seip H.M. 1992. Dissolved organic carbon fractions in soil and stream water during variable hydrological conditions at Birkenes, Southern Norway. Water Res. Res. 28: 1585-1596.

    Google Scholar 

  • Espirito Santo C.V. 1995. Diagnóstico e avaliação de setor florestal brasileiro região Centro-Oeste: Anuário executivo. FUNATURA/ITTO/IBAMA, Brasília, DF, Brazil, 59 p.

    Google Scholar 

  • Frangi J.L. and Lugo A.E. 1985. Ecosystem dynamics of a subtropical floodplain forest. Ecol. Monogr. 55: 351-369.

    Google Scholar 

  • Gödde M., David M.B., Christ M.J., Kaupenjohann M. and Vance G.F. 1996. Carbon mobilization from the forest floor under red spruce in the northeastern U.S.A. Soil Biol. Biochem. 28: 1181-1189.

    Google Scholar 

  • Goodland R. 1971. A physiognomic analysis of the “Cerrado” vegetation of central Brazil. Ecol. 59: 411-419.

    Google Scholar 

  • Greenland D.J. 1971. Interactions between humic and fulvic acids and clays. Soil Sci. 111: 34-41.

    Google Scholar 

  • Gregorich E.G. and Janzen H.H. 2000. Decomposition. In: Sumner M.E. (ed.), Handbook of Soil Science. CRC Press, Boca Raton, FL, USA, pp. C107-C120.

    Google Scholar 

  • Grøn C., Tøsløv J., Albrechtsen H.-J. and Møller Jensen H. 1992. Biodegradability of dissolved organic carbon in groundwater from an unconfined aquifer. Sci. Total Environ. 177/118: 241-251.

    Google Scholar 

  • Gu B., Schmitt J., Chen Z., Liang L. and McCarthy J.F. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 28: 38-46.

    Google Scholar 

  • Guggenberger G. and Zech W. 1993. Dissolved organic carbon control in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analysis. Geoderma. 59: 109-129.

    Google Scholar 

  • Guggenberger G., Zech W. and Schulten H.-R. 1994. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Org. Geochem. 21: 51-66.

    Google Scholar 

  • Guggenberger G., Kaiser K. and Zech W. 1998. Organic colloids in forest soils: 1. Biochemical mobilization in the forest floor. Phys. Chem. Earth 23: 141-146.

    Google Scholar 

  • Hinton M.J., Schiff S.L. and English M.C. 1998. Sources and flowpaths of dissolved organic carbon during storm events in two forested watersheds of the Precambrian Shield. Biogeochemistry 41: 175-197.

    Google Scholar 

  • Hoffman W.A. Jr, Lindberg S.E. and Turner R.R. 1980. Some observations of organic constituents in rain above and below a forest canopy. Environ. Sci. Technol. 14: 999-1002.

    Google Scholar 

  • Hongve D. 1999. Production of dissolved organic carbon in forested catchments. J. Hydrol. 224: 91-99.

    Google Scholar 

  • Jandl R. and Sollins P. 1997. Water-extractable soil carbon in Relation to the belowground carbon cycle. Biol. Fert. Soils 25: 196-201.

    Google Scholar 

  • Jardine P.M., Weber N.L. and McCarthy J.F. 1989. Mechanism of dissolved organic carbon adsorption on soil. Soil Sci. Soc. Am. J. 53: 1378-1385.

    Google Scholar 

  • Jardine P.M., Wilson G.V., McCarthy J.F., Luxmoore R.J., Taylor D.L. and Zelazny L.W. 1990. Hydrogeochemical processes controlling the transport of dissolved organic carbon through a forested hillslope. J. Contam. Hydrol. 6: 3-19.

    Google Scholar 

  • Kaiser K. and Zech W. 1997. Competitive sorption of dissolved organic matter fractions to soils and related mineral phases. Soil Sci. Soc. Am. J. 61: 64-69.

    Google Scholar 

  • Kaiser K., Guggenberger G. and Zech W. 1996. Sorption of DOM and DOM fractions to forest soils. Geoderma. 74: 281-303.

    Google Scholar 

  • Kaiser K., Guggenberger G., Haumaier L. and Zech W. 1997. Dissolved organic matter sorption on subsoils and minerals studied by 13C-NMR and DRIFT spectroscopy. Eur. J. Soil Sci. 48: 301-310.

    Google Scholar 

  • Kaiser K., Guggenberger G., Haumaier L. and Zech W. 2001. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry 55: 103-143.

    Google Scholar 

  • Kalbitz K., Solinger S., Park J.-H., Michalzik B. and Matzner E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165: 277-304.

    Google Scholar 

  • Koprivnjak J.-F. and Moore T.R. 1992. Sources, sinks, and fluxes of dissolved organic carbon in sub-artic fen catchments. Arctic Alpine Res. 24: 204-210.

    Google Scholar 

  • Leenheer J.A. 1981. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ. Sci. Technol. 15: 575-587.

    Google Scholar 

  • Likens G.E. and Eaton J.S. 1970. A polyurethane stemflow collector for trees and shrubs. Ecol. 51: 938-939.

    Google Scholar 

  • Likens G.E., Edgerton E.S. and Galloway J.N. 1983. The composition and deposition of organic carbon in precipitation. Tellus 35B: 16-24.

    Google Scholar 

  • Lilienfein J., Wilcke W., Ayarza M.A., do Carmo Lima S., Vilela L. and Zech W. 1999. Annual course of matric potential in differently used savanna oxisols in Brazil. Soil Sci. Soc. Am. J. 63: 1778-1785.

    Google Scholar 

  • Lilienfein J., Wilcke W., Ayarza M.A., Vilela L., do Carmo Lima S. and Zech W. 2000. Soil acidification in Pinus caribaea forests on Brazilian savanna Oxisols. Forest Ecol. Manag. 128: 145-157.

    Google Scholar 

  • Lilienfein J., Wilcke W., Thomas R., Vilela L., do Carmo Lima S. and Zech W. 2001a. Effects of Pinus caribaea plantations on the C, N, P, and S status of Brazilian savanna oxisols. Forest Ecol. Manag. 147: 171-182.

    Google Scholar 

  • Lilienfein J., Wilcke W., Zimmermann R., Gerstberger P., AraÚjo G.M. and Zech W. 2001b. Nutrient storage in soil and biomass of native Brazilian Cerrado. J. Plant Nutr. Soil Sci. 164: 487-495.

    Google Scholar 

  • Lundquist E.J., Jackson L.E. and Scow K.M. 1999. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol. Biochem. 31: 1031-1038.

    Google Scholar 

  • McDowell W.H. 1998. Internal nutrient fluxes in a Puerto Rican rain forest. J. Trop. Ecol. 14: 521-536.

    Google Scholar 

  • McDowell W.H. and Likens G.E. 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr. 58: 177-195.

    Google Scholar 

  • McDowell W.H. and Asbury C.E. 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol. Oceanogr. 39: 111-125.

    Google Scholar 

  • McKnight D.M., Bencala K.E., Zellweger G.W., Aiken G.R., Feder G.L. and Thorn K.A. 1992. Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of deer creek with the Snake River, Summit County, Colorado. Environ. Sci. Technol. 26: 1388-1396.

    Google Scholar 

  • Michalzik B., Kalbitz K., Park J.-H., Solinger S. and Matzner E. 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen-a synthesis for temperate forests. Biogeochemistry 52: 173-205.

    Google Scholar 

  • Mitchell G. and McDonald A.D. 1992. Discoloration of water by peat following induced drought and rainfall simulation. Water Res. 26: 321-326.

    Google Scholar 

  • Mokma D.L. and Evans C.V. 2000. Spodosols. In: Sumner M.E. (ed.), Handbook of Soil Science. CRC Press, Boca Raton, FL, USA, pp. E307-E321.

    Google Scholar 

  • Moore T.R. 1989. Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand. 1. Maimai. Water Resources Research 25: 1321-1330.

    Google Scholar 

  • Murphy E.M. and Zachara J.M. 1995. The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma 67: 103-124.

    Google Scholar 

  • Neufeldt H., de Oliveira Schneider M. and Zech W. 1999. Oxisol development along a compound catena of the Araguari River, Central Brazil. In: Thomas R. and Ayarza M.A. (eds), Sustainable Land Management for the Oxisols of the Latin America Savannas. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, pp. 10-21.

    Google Scholar 

  • Nilsson S.I., Andersson S., Valeur I., Persson T., Bergholm J. and Wirén A. 2001. Influence of dolomite lime on leaching and storage of C, N and S in a Spodosol under Norway spruce (Picea abies (L.) Karst.). Forest Ecol. Manag. 146: 55-73.

    Google Scholar 

  • Orem W.H. and Hatcher P.G. 1987. Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environments. Org. Geochem. 11: 73-82.

    Google Scholar 

  • Preston C.M., Hempfling R., Schulten H.-R., Schnitzer M., Trofymow J.A. and Axelson D.E. 1994. Characterization of organic matter in a forest soil of coastal British Columbia by NMR and pryrolysis-field ionization mass spectrometry. Plant Soil 158: 69-82.

    Google Scholar 

  • Qualls R.G. and Haines B.L. 1991. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci. Soc. Am. J. 55: 1112-1123.

    Google Scholar 

  • Qualls R.G. and Haines B.L. 1992. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci. Soc. Am. J. 56: 578-586.

    Google Scholar 

  • Raastad I.A. and Mulder J. 1999. Dissolved organic matter (DOM) in acid forest soils at Gårdsjön (Sweden): Natural variabilities and effects of increased input of nitrogen and of reversal of acidification. Water Air Soil Pollut. 114: 199-219.

    Google Scholar 

  • Ribeiro J.F. and Walter B.M.T. 1998. Fitofisionomias do bioma Cerrado. In: Sano S.M. and Almeida S.pd. (eds), Cerrado-Ambiente e Flora. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Planaltina, DF, Brazil, pp. 89-166.

    Google Scholar 

  • Rosa R., do Carmo Lima S. and Assunção W.L. 1991. Abordagem preliminar das condições climáticas de Uberlândia (MG). Sociedade & Natureza 3: 91-108.

    Google Scholar 

  • Sanhueza E., Arias M.C., Donoso L., Graterol N., Hermoso M., Martí I. et al. 1992. Chemical composition of acid rains in the Venezuelan savannah region. Tellus 44B: 54-62.

    Google Scholar 

  • Scott M.J., Jones M.N., Woof C. and Tipping E. 1998. Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system. Environ. Intern. 24: 537-546.

    Google Scholar 

  • Soil Survey Staff 1998. Keys to Soil Taxonomy. USDA-SCS. Pocahontas Press, Blacksburg, VA, USA.

    Google Scholar 

  • Thurman E.M. 1985. Organic Geochemistry of Natural Waters W. Junk, Boston, MA, USA.

    Google Scholar 

  • Tipping E., Woof C., Rigg E., Harrison A.F., Ineson P., Poskitt J. et al. 1999. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ. Intern. 25: 83-95.

    Google Scholar 

  • Tukey H.B. 1970. The leaching of substances from plants. An. Rev. Plant Physiol. 21: 305-324.

    Google Scholar 

  • Vance G.F. and David M.B. 1991. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA. Geochim. Cosmochim. Acta. 55: 3611-3625.

    Google Scholar 

  • Wang J. and Bakken L.R. 1997. Competition for nitrogen during mineralization of plant residue in soil: Microbal response to C and N availability. Soil Biol. Biochem. 29: 163-170.

    Google Scholar 

  • Whitehead D.C., Dibb H. and Hartley R.D. 1983. Bound phenolic compounds in water extracts of soils, plant roots and leaf litter. Soil Biol. Biochem. 15: 133-136.

    Google Scholar 

  • Wilcke W. and Lilienfein J. 2002. Biogeochemical consequences of the transformation of native Cerrado into Pinus caribaea plantations in Brazil. Plant Soil 238: 175-189.

    Google Scholar 

  • Wilson M.A. 1987. NMR Techniques and Applications in Geochemistry and Soil Chemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Worrall J.J., Anagnost S.E. and Zabel R.A. 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologica 89: 199-219.

    Google Scholar 

  • Zsolnay A. 1996. Dissolved humus in soil waters. In: Piccolo A. (ed.), Humic Substances in Terrestrical Ecosystems. Elsevier Science B.V., pp. 171-233.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciglasch, H., Lilienfein, J., Kaiser, K. et al. Dissolved organic matter under native Cerrado and Pinus caribaea plantations in the Brazilian savanna. Biogeochemistry 67, 157–182 (2004). https://doi.org/10.1023/B:BIOG.0000015281.74705.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOG.0000015281.74705.f8

Navigation