Skip to main content
Log in

Surface Properties and Catalytic Activity of TiO2–ZrO2 Mixed Oxides in Dehydration of Methanol to Dimethyl Ether

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of TiO2–ZrO2 mixed oxides with varying molar ratio of TiO2 to ZrO2 were prepared by the co-precipitation method. The crystalline phases of the oxides were characterized by XRD and their acid–base properties by TPD of NH3 and CO2 and IR of adsorbed pyridine. The catalytic activities were investigated for the vapor phase dehydration of methanol to dimethyl ether (DME) in a fixed-bed reactor under atmospheric pressure. The mixed oxides are highly amorphous in nature. The acid–base properties and CH3OH conversion activity are increasing with TiO2 content and an optimum value is achieved for a molar ratio of Ti/Zr in the vicinity of 1/1. At lower reaction temperature (<300 °C), the selectivity for DME is nearly 100%. A good correlation is observed between dehydration activity and the acid–base properties of the TiO2–ZrO2 catalysts. It is significant to note that TiO2–ZrO2 catalysts show high stability against water during dehydration reaction. Based on our results, a surface mechanism involving both acid–base sites has been proposed for DME formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Rouhi, Chem. Eng. News. May 29 (1995).

  2. M. Xu, J.M. Lunsford, D.W. Goodman and A. Bhattacharya, Appl. Catal. A 149 (1997) 289.

    Google Scholar 

  3. C.D. Chang, Catal. Rev. Sci. Eng. 25 (1983) 1.

    Google Scholar 

  4. G. Cai, Z. Liu, R. Shi, C. He, L. Yang, C. Sun and Y. Chang, Appl. Catal. A 125 (1995) 29.

    Google Scholar 

  5. K.-W. Jun, H.-S. Lee, H.-S. Roh and S.-E. Park, Bull. Korean Chem. Soc. 24 (2003) 106.

    Google Scholar 

  6. K.-W. Jun, K.S. Rama Rao, M.-H. Jung and K.-W. Lee, Bull. Korean Chem. Soc. 19 (1998) 466.

    Google Scholar 

  7. O.-S. Joo, K.-D. Jung and S.-H. Han, Bull. Korean Chem. Soc. 23 (2002) 1103.

    Google Scholar 

  8. K.-W. Jun, W.J. Shen and K.-W. Lee, Bull. Korean Chem. Soc. 20 (1999) 993.

    Google Scholar 

  9. W.J. Shen, K.-W. Jun, H.-S. Choi and K.-W. Lee, Bull. Korean Chem. Soc. 17 (2000) 210.

    Google Scholar 

  10. J.L. Tao, K.-W. Jun and K.-W. Lee, Appl. Organometal. Chem. 15 (2001) 105.

    Google Scholar 

  11. K.-W. Jun, H.-S. Lee, H.-S. Roh and S.-E. Park, Bull. Korean Chem. Soc. 23 (2002) 803.

    Google Scholar 

  12. C.N. Satterfield, Heterogeneous Catalysis and Industrial Practice, 2nd edn.(McGraw-Hill, New York, 1993)ch. 7.

    Google Scholar 

  13. H.-S. Roh, K.-W. Jun, J.-W. Kim and V. Vishwanathan, Unpublished results.

  14. B.M. Reddy, B. Chowdhary and P.G. Smirnotis, Appl. Catal. A 211 (2001) 19.

    Google Scholar 

  15. B.M. Reddy, P.M. Sreekanth, Y. Yamada, Q. Xu and T. Kobayashi, Appl. Catal. A 228 (2002) 269.

    Google Scholar 

  16. I. Wang, W.F. Chang, R.J. Shiau, J.C. Wu and C.S. Chung, J. Catal. 83 (1983) 428.

    Google Scholar 

  17. J.C. Wu, C.S. Chung, C.L. Ay and I. Wang, J. Catal. 87 (1984) 98.

    Google Scholar 

  18. F.D. Daly, H. Ando, J.L. Schmitt and E.A. Sturm, J. Catal. 108 (1987) 401.

    Google Scholar 

  19. J. Fung and I. Wang, J. Catal. 130 (1991) 577.

    Google Scholar 

  20. J.G. Weissman, E.I. Ko and S. Kaytal, Appl. Catal. A 94 (1993) 45.

    Google Scholar 

  21. C. Lahousse, A. Aboulayt, F. Mange, J. Bachetier and J.C. Lavalley, J. Mol. Catal. 84 (1993) 283.

    Google Scholar 

  22. S.K. Maity, M.S. Rana, S.K. Bej, J.A. Juarez, G. Murali Dhar and T.S.R. Prasada Rao, Catal. Lett. 72 (2001) 115.

    Google Scholar 

  23. K. Tanabe, in: Catalysis Science and Technology,Vol. 2, eds. J.R. Anderson and M. Boudart(Springer-Verlag,New York, 1981)ch. 5.

    Google Scholar 

  24. H. Knozinger and R. Kohne, J. Catal. 3 (1964) 559.

    Google Scholar 

  25. H. Knozinger, K. Kochloeft and W. Meye, J. Catal. 28 (1973) 69.

    Google Scholar 

  26. H. Knozinger and D. Dautzenberg, J. Catal. 33 (1974) 142.

    Google Scholar 

  27. J.R. Jain and C.N. Pillai, J. Catal. 9 (1967) 322.

    Google Scholar 

  28. J.E. Dabrouski, J.B. Butt and H. Bliss, J. Catal. 18 (1970) 297.

    Google Scholar 

  29. J.M. Parera and N.S. Figoli, J. Catal. 14 (1969) 303.

    Google Scholar 

  30. N.S. Figoli, S.A. Hillar and J.M. Parera, J. Catal. 20 (1971) 230.

    Google Scholar 

  31. E.P. Pary, J. Catal. 2 (1963) 371.

    Google Scholar 

  32. H. Knozinger, Adv. Catal. 25 (1976) 184.

    Google Scholar 

  33. H. Knozinger and P. Ratnasamy, Catal. Rev. Sci. Eng. 17 (1978) 31.

    Google Scholar 

  34. J. Ramirez, L.R. Ramirez, L. Cedeno, V. Harle, M. Vrinat and M. Breysse, Appl. Catal. A 93 (1993) 163.

    Google Scholar 

  35. E.L. Salinas, J.G.H. Cortez, M.A.C. Jacome, J. Navarrete, M.E. Llanos, A. Vazquez, H. Armendariz and T. Lopez, Appl. Catal. A 175 (1998) 43.

    Google Scholar 

  36. R.W. Stevens, S.S.C. Chuang and B.H. Davis, Appl. Catal. A 252 (2003) 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishwanathan, V., Roh, HS., Kim, JW. et al. Surface Properties and Catalytic Activity of TiO2–ZrO2 Mixed Oxides in Dehydration of Methanol to Dimethyl Ether. Catalysis Letters 96, 23–28 (2004). https://doi.org/10.1023/B:CATL.0000029524.94392.9f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000029524.94392.9f

Navigation