Skip to main content
Log in

Decoupling and Block Preconditioning for Sedimentary Basin Simulations

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The simulation of sedimentary basins aims at reconstructing its historical evolution in order to provide quantitative predictions about phenomena leading to hydrocarbon accumulations. The kernel of this simulation is the numerical solution of a complex system of partial differential equations of mixed parabolic–hyperbolic type. A discretisation and linearisation of this system leads to large ill-conditioned nonsymmetric linear systems with three unknowns per mesh element. The preconditioning which we will present for these systems consists in three stages: (i) a local decoupling of the equations which (in addition) aims at concentrating the elliptic part of the system in the “pressure block”; (ii) an efficient preconditioning of the pressure block using AMG; (iii) the “recoupling” of the equations. In all our numerical tests on real case studies we observed a reduction of the CPU-time for the linear solver (up to a factor 4.3 with respect to the current preconditioner ILU(0)) and almost no degradation with respect to physical and numerical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aziz and A. Settari, Petroleum Reservoir Simulation (Elsevier, London, 1979).

    Google Scholar 

  2. S. Balay, W. Gropp, L. Curfman McInnes and B. Smith, PETSc users manual, Report ANL-95/11 (Revision 2.1.0), Argonne National Laboratory, IL (2001).

    Google Scholar 

  3. A. Behie and P.K.W. Vinsome, Block iterative methods for fully implicit reservoir simulation, Soc. Petroleum Engrg. J. 22 (1982), 658-668.

    Google Scholar 

  4. C.N. Dawson, H. Klie, M.F. Wheeler and C.S. Woodward, A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-Krylov solver, J. Comput. Geosci. 1 (1997) 215-249.

    Article  MATH  MathSciNet  Google Scholar 

  5. H.C. Edwards, A parallel multilevel-preconditioned GMRES solver for multi-phase flow models in the Implicit Parallel Accurate Reservoir Simulator (IPARS), TICAM Report 98-04, University of Texas, Austin (1998).

    Google Scholar 

  6. G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles non Linéaires de l'Ingénierie Pétrolière (Springer, Berlin, 1996).

    Google Scholar 

  7. S. Lacroix, Y.V. Vassilevski, J. Wheeler and M.F. Wheeler, Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput. (2003) to appear.

  8. S. Lacroix, Y.V. Vassilevski and M.F. Wheeler, Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS), Numer. Linear Algebra Appl. 8 (2001) 537-549.

    Article  MATH  MathSciNet  Google Scholar 

  9. Manuel utilisateur des calculateurs ViscoM1D et Visco3D, Technical Report, Institut Français du Pétrole, Rueil-Malmaison (2002).

  10. R. Masson, P. Quandalle, S. Requena and R. Scheichl, Parallel preconditioning for sedimentary basin simulations, in: Proc. of the 4th Internat. Conf. on Large Scale Scientific Computations, 4–8 June 2003, Sozopol, Bulgaria, Lecture Notes in Computer Science, to appear.

    Google Scholar 

  11. J.W. Ruge and K. Stüben, Algebraic multigrid (AMG), in: Multigrid Methods, ed. S.F. McCormick, Frontiers in Applied Mathematics, Vol. 5 (SIAM, Philadelphia, 1986).

    Google Scholar 

  12. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publishing, Boston, 1996).

    Google Scholar 

  13. F. Schneider, S. Wolf, I. Faille and D. Pot, A 3D basin model for hydrocarbon potential evaluation: Application to Congo Offshore, Oil and Gas Science and Technology–Rev. IFP 55 (2000) 3-13.

    Google Scholar 

  14. K. Stüben, Algebraic multigrid (AMG): Experiences and comparisons, Appl. Math. Comput. 13 (1983) 419-452.

    Article  MATH  MathSciNet  Google Scholar 

  15. H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput. 12 (1992) 631-644.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheichl, R., Masson, R. & Wendebourg, J. Decoupling and Block Preconditioning for Sedimentary Basin Simulations. Computational Geosciences 7, 295–318 (2003). https://doi.org/10.1023/B:COMG.0000005244.61636.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COMG.0000005244.61636.4e

Navigation