Skip to main content
Log in

Tissue Distribution and Redistribution of Trace Elements in Shrimp Species with the Emphasis on the Roles of Metallothionein

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This review is focused on distribution and redistribution of trace elements in various tissues of different shrimp species, especially genus Penaeus. The possible roles of metallothionein in this regard are emphasized. Factors affecting heavy metals uptake and distribution have also been reviewed separately. Moreover, patterns of metals bioaccumulation and their order of occurrence have been evaluated. Another part of this paper deals with comparison of the related data from different aquatic environments as well as existing guidelines and limits for human consumption. Generally, the number of conducted studies in some related context, especially in the case of possible roles of metallothionein during storage of organisms is very limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahsanullah, M., Negilski, D.S. and Mobley, M.C. (1981). Toxicity of zinc, cadmium and copper to the shrimp Callianassa australiensis. III. Accumulation of metals}. Mar. Biol. 64, 311–6.

    Google Scholar 

  • Alikhan, M.A. (1989). Magnesium and manganese regulation during moult-cycle in Porcellio spinicornis Say (Porcellionidae, Isopoda). Bull. Environ. Contam. Toxicol. 42, 699–706.

    Google Scholar 

  • Amiard, J.C., Metayer. C, Baud. J.P. and Ribeyre. F. (1991). Influence of some ecological factors on metal bioaccumulation (Cd, Cu, Pb, Zn) in juvenile carpet shells (Ruditapes philippinarum) during their nursing. Rev. Sci. Eua. 4, 441–8.

    Google Scholar 

  • Anderson, M.B., Preslan. J.E., Jolibois. L, Bollinger. J.E. and George. W.G. (1997). Bioaccumulation of lead nitrate in red swamp cryfish (Procambarus clarkii). J. Hazard. Mater. 54 (1-2), 15-29.

    Google Scholar 

  • Anon. (1986). Assessment of the present state of pollution by cadmium, copper, zinc and lead in the Mediterranean Sea. UNEP/WG.144/11 submitted to the Fourth Meeting of the Working Group for Scientific and Technical Cooperation for MED POL, 41pp.

  • Anon. (1999). Workshop on combined effects in the marine environment. Report of the workshop, Copenhagen, 16-17 No. 1998, AMAP Report 99:1, 84 pp.

  • Bagatto, G and Alikhan M.A. (1987). Copper, cadmium and nickel accumulation in crayfish populations near coppernickel smelters at Sudbury, Ontario, Canada. Bull. Environ. Contam. Toxicol. 38, 540–5.

    Google Scholar 

  • Balkas, T.I., Turul, S. and Saliholu, I. (1982). Trace metal levels in fish and crustaceans from northeastern Mediterranean coastal waters. Mar. Environ. Res. 6(4), 281–9.

    Google Scholar 

  • Barnes, R.S.K., Calow, P. and Olive P.J.W. (1999). The invertebrates: A New Synthesis 2nd edn. 488 pp. Blackwell Science Ltd.

  • Biney, C.A. and Ameyibor E. (1992). Trace metal concentrations in the pink shrimp Penaeus notialis, from the coast of Ghana. Water Air Soil Pollut. 63, 273–9.

    Google Scholar 

  • Bliss, D.E. (1983). The biology of Custacea: Internal Anatomy and Physiological Regulation, Vol. 5, 457 pp, Academic Press.

  • Boyden, C.R. (1977). Effect of size upon metal content of shellfish. J. Mar. Biol. Ass. UK, 57, 675–714.

    Google Scholar 

  • Brouwer, M., Brouwer-Hoexum, T. and Cashon, R. (1993). Crustaceans as models for metal metabolism: III. Interaction of lobster and mammalian metallothionein with glutathione. Mar. Environ. Res. 35, 13–7.

    Google Scholar 

  • Bryan, G.W. and Ward, E. (1965). The absorption and loss of radioactive and non-radioactive manganese by the lobster, Homarus vulgaris. J. Mar. Biol. Ass. 45, 65–95.

    Google Scholar 

  • 2_1.pdf}, 163 pp.

  • Canli, M. and Furness R.W. (1993). Toxicity of heavy metals dissolved in seawater and influences of sex and size on metal accumulation and tissue distribution in the Norway lobster Nephrops norvegicus. Mar. Environ. Res. 36, 217–26.

    Google Scholar 

  • Canli, M., Stagg, R. M. and Rodger, G. (1997). The induction of metallothionein in tissues of the Norway Lobster Nephrops norvegicus following exposure to cadmium, copper and zinc: The relationships between metallothionein and the metals. Environ. Pollut. 96(3), 343–50.

    Google Scholar 

  • Carbonell, G., Ramos C. and Tarazona J.V. (1998). Heavy metals in shrimp culture area from the Gulf of Fonseca, Central America. II Cultured Shrimps, Environ. Conserv. Toxicol., 60, 260–5.

    Google Scholar 

  • Clark, R.B. (2001). Marine Pollution. 5th edn. 237 pp. Oxford University Press.

  • Collings, S.E., Johnson, M.S., and Leah, R.T. (1996). Metal contamination of angler-caught fish from the Mersey Estuary. Mar. Environ. Res. 41(3), 281–97.

    Google Scholar 

  • Dall, W. and Moriarty, D.J.W. (1983). Functionl aspects of nutrition and digestion. Biolo Crustacea 5, 215–61.

    Google Scholar 

  • Darmono, D. and Denton, G.R.W. (1990). Heavy metal concentrations in the banana prawn, Penaeus merguiensis, and leader prawn, P. monodon, in the Townsville Region of Australia. Bull. Environ. Contam. Toxicol. 44, 479–86.

    Google Scholar 

  • Davis, A.D., Addison, A.L. and Gatlin, D.M. (1992). Mineral requirements of Penaeus vanamei: A preliminary examination of the dietary essentiality for thirteen minerals. J. World Aquacult. Soc. 23, 8–17.

    Google Scholar 

  • Depledge, M.H., Forbes, T.L. and Forbes, V.E. (1993). Evaluation of cadmium, copper, zinc, and iron concentrations and tissue distributions in the benthic crab, Dorippe granulata (De Haan, 1841) from Tolo Harbour, Hong Kong. Environ. Pollut. 81, 15–9.

    Google Scholar 

  • Dunn, M.A., Blalock, T.L. and Cousins, R.J. (1987). Metallothionein. Proc. Soc. Exp. Biol. Med. 185, 107–19.

    Google Scholar 

  • Elder, J.F. (1989). Metal Biogeochemistry in Surface-water Systems-A Review of Principles and Concepts. U.S. Geological Survey Circular 1013, 43 pp.

  • Engel, D.W. and Brouwer, M. (1984). Trace metal-binding proteins in marine molluscs and crustaceans. Mar. Environ. Res. 13, 177–94.

    Google Scholar 

  • Engel, D.W. and Brouwer, M. (1987). Metal regulation and molting in the blue crab, Callinectes sapidus: metallothionein function in metal metabolism. Biol. Bull. 173, 239–51.

    Google Scholar 

  • Engel, D.W. and Brouwer, M. (1991). Short-term metallothionein and copper changes in blu crabs at ecdysis. Biol. Bull. 180, 447–52.

    Google Scholar 

  • Engel, D.W. (1993). Crustaceans as models for metal metabolism: I. Effects of the molt cycle on blue crab metal metabolism and metallothionein. Mar. Environ. Res. 35, 1–5.

    Google Scholar 

  • Francesconi, K.A., Moore, E.J. and Joll, L.M. (1993). Cadmium in saucer scallop, Amusium balloti, from western Australian waters: concentrations in adductor muscle and redistribution following frozen storage. Aust. J. Mar. Freshwater Res. 44, 457–79.

    Google Scholar 

  • Francesconi, K.A., Pedersen, K.L. and Hojrup, P. (1998). Sex specific accumulation of Cd-metallothionein in the abdominal muscle of coral prawn Metapenaeopsis crassissima from a natural population. Mar. Environ. Res. 46(1-5), 541–4.

    Google Scholar 

  • Frenet, M. and Alliot, A. (1985). Comparative bioaccumulation of metals in Palaemonates varians in polluted and nonpoliuted environments. Mar. Environ. Res. 17, 19–44.

    Google Scholar 

  • George, S.G. and Olsson, P.E. (1994). Metallothioneins as Indicators of Trace Metal Pollution. Biomonitoring of Coastal Water and Estuaries, K.J.M. Kramer, (ed.), pp. 151–71. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Guhathakurta, H and Kaviraj A. (2000). Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parsia) in some brackish water ponds of Sunderban, India. Mar. Pollut. Bull. 40(11), 914–20.

    Google Scholar 

  • Hamer, D. (1986). Metallothionein. Ann. Rev. Biochem. 55, 913–51.

    Google Scholar 

  • Hilmy, A.M., Abd El-Hamid, N.F. and Ghazaly, K.S. (1988). Varation of zinc and copper levels with sex and size in different tissues of crab Portunus pelagicus (Linnaeus). Folia Morphologica 2, 160–6.

    Google Scholar 

  • Ismail, A., Jusoh, N.R. and Ghani, I.A. (1995). Trace metal concentrations in marine prawns off Malaysian coast. Mar. Pollut. Bull. 31(1-3), 108–10.

    Google Scholar 

  • Jeckel, W.H., Roth, R.R. and Ricci, L. (1996). Patterns of trace metal distribution in tissues of Pleoticus muelleri (Crustacea: Decapoda: Solenoceridae). Mar. Biol. 125(2), 297–306.

    Google Scholar 

  • Joseph, K.O. and Srivastava, J.P. (1992). Heavy metal load in prawn, Penaeus indicus (H. Milne Edwards) inhabiting Ennor Estuary in Madras. J. Inland Fish. Soc. India 24(1), 30–3.

    Google Scholar 

  • Joseph, K.O., Srivastava, J.P. and Kadir, P.M.A. (1992). Acute toxicity of five heavy metals to the prawn, Penaeus indicus (H. Milne Edwards) in brackishwater medium. J. Inland Fish. Soc. India 24(2), 82–4.

    Google Scholar 

  • Kägi, J.H.R. and Kojima, Y. (1987). Chemistry and biochemistry of metallothionein. Experientia Supplementum 52, 25–61.

    Google Scholar 

  • Kägi, J.H.R. and Schäffer, A. (1988). Biochemistry and metallothionein. Biochemistry 27(23), 8509–15.

    Google Scholar 

  • Kaviraj, A. Ghosal T.K. and Biswas, B. (1998). Effects of compost manure on the bioaccumulation and toxicity of cadmium to air breathing mullet Heteropneustes fossilis (Heteropneustidae) Ital. Jo. Zoo. 69, 487–92.

    Google Scholar 

  • Keenan, S. and Alikhan, M.A. (1991). Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab.) (Decapoda, Crustacea) from an acidic and neutral lake. Bull. Environ. Contam. and Tox. 47, 91–96.

    Google Scholar 

  • Keteles K.A. and Fleeger J.W. (2001). The concentration of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio Holthius. Mar. Pollut. Bull. 42(12), 1397–402.

    Google Scholar 

  • Kureishy, T.W. (1993). Concentration of heavy metals in marine organisms around Qatar before and after the Gulf war oil spill. Mar. Pollut. Bull. 27, 183–6.

    Google Scholar 

  • Langston, W.J. and Spence, S.K. (1995). Biological factors involved in metal concentrations observed in aquatic organisms. Metal Speciation and Bioavailability in Aquatic Systems, pp. 407–78. Chichester: John Wiley and Sons Ltd. 407-78.

    Google Scholar 

  • Leatherlands, J.F. and Woo, P.T.K. (1998). Fish Diseases and Disorders Vol. 2: Non-infections disorders, 400 pp. CABI Publishing.

  • Lindahl, U. and Moksnes, P. (1993). Metallothionein as a bioindicator of heavy metal stress in Colombian fish and shrimp: A study of dose-dependent induction. Fish. Dev. Ser. Natl. Swed. Board Fish. Goetborg, Sweden Swedmar. 73, 36–47.

    Google Scholar 

  • Lobel, P.B., Mogie P., Wright, D.A. and Wu, B.L. (1982). Metal accumulation in four molluscs. Mar. Pollut. Bull. 13(5): 170–74.

    Google Scholar 

  • Luoma, S.N. (1983). Bioavailability of trace metals to aquatic organisms: A review. Sci Total Environ. 28, 1–22.

    Google Scholar 

  • Madany, I.M., Wahab, A.A.A. and Al-Alawi, Z. (1996). Trace metals concentrations in marine organisms from the coastal areas of Bahrain, Arabian Gulf. Water Air Soil Poll., 91, 233–48.

    Google Scholar 

  • Maher, W.A. (1986). Trace metal concentrations in marine organisms from St. Vincent Gulf, south Australia. Water Air Soil Poll. 29, 77–84.

    Google Scholar 

  • Mance, G. (1990). Pollution Threat of Heavy Metals in Aquatic Environments, 372 pp. Elsevier.

  • Martin, J.L.M. (1974). Metals in Cancer irroratus (Crustacea: Decapoda): concentration, concentration factors, discrimination factors and correlations. Mar. Biol. 28, 245–51.

    Google Scholar 

  • Mason, A.Z., Simkiss K. (1983). Interaction between metals and their distribution in tissues of Littorina littoria (L) collected from clean and polluted sites. J. Mar. Biol. Ass. 63, 661–72.

    Google Scholar 

  • Mason, C.F. (1996). Biology of Freshwater Pollution, 3rd edn. 356 pp. Longman Group Limited.

  • Méndez, L., Acosta, B., Palacois, E. and MagallÓn, F. (1997). Effect of stocking densities on trace metal concentration in three tissues of brown shrimp Penaeus californiensis. Aquaculture 156, 21–34.

    Google Scholar 

  • Merian, E. (1991). Metals and their Compounds in the Environment Occurrence, Analysis and Biological Relevance, Weinheim: VCH 704 pp.

    Google Scholar 

  • Moksnes, P., Lindahl, U. and Haux, C. (1995). Metallothionein as a bioindicator of heavy metal exposure in tropical shrimp, Penaeus vannamei: a study of dose-dependent induction. Mar. Environ. Res. 39, 143–6.

    Google Scholar 

  • Moore, J.W. and Ramamoorthy, S. (1984). Heavy Metals in Natural Waters, 268 pp. Springer-Verlag.

  • Mormede, S. and Davies, I.M. (2001). Heavy metal concentrations in commercial deep-sea fish from Rockall trough. Cont. Shelf Res. 21, 899–916.

    Google Scholar 

  • Nauen, C. E. (1983). Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular No. 764, Rome, Italy, 102 pp.

  • Olafson, R.W. and J. A. J. Thompson (1974). Isolation of heavy metal binding proteins from marine vertebrates, Mar. Biol., 28, 83–6.

    Google Scholar 

  • Olafson, R.W., R. G. Sim and K. G. Boto (1979). Isolation and chemical characterization of heavy metal-binding protein metallothionein from marine invertebrates. Comp. Biochem. Physiol. 62B, 407–16.

    Google Scholar 

  • Otvos, J. D., Olafson, R. W. and M. Armitage (1982). Structure of an invertebrate metallothionein from Scylla serrata. J. Biol. Chem. 257(5), 2427–31.

    Google Scholar 

  • Otvos, J. D., D. H. Petering and C. F. Shaw (1989). Structurereactivity relationships of metallothionein, a unique metalbinding protein. Inorg. chem. 9, 1–35.

    Google Scholar 

  • Overnell, J. (1982). A method for the isolation of metallothionein from the hepatopancreas of the Crab Cancer pagurus that minimizes the effect of the tissue proteases. Comparative Biochemistry and Physiology. 73B(3), 547–53.

    Google Scholar 

  • Paez-Osuna, F. and Ruiz C. Fernandez (1995). Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments. Environ. Pollut. 87, 243–7.

    Google Scholar 

  • Paez-Osuna, F., Perez R. Gonzalez, G. Izaguirre-Fierro, H.M. Zaazueta-Padilla and Flores L.M. Campana (1995). Trace metal concentrations and their distribution in the lobster Panulirus inflatus (Bouvier, 1895) from the Mexican pacific coast. Environ. Pollut. 90(2), 163–70.

    Google Scholar 

  • Paez-Osuna, F. and Tron-Mayen, L. (1995). Distribution of heavy metals in tissues of shrimp Penaeus californiensis from the northwest coast of Mexico. Environ. Contam. Toxicol. 55, 209–15.

    Google Scholar 

  • Paez-Osuna, F. and Tron-Mayen, L. (1996). Concentration and distribution of heavy metals in tissues of wild and farmed shrimp Penaeus vannamei from the northwest coast Mexico. Environ. Int. 22(4), 443–50.

    Google Scholar 

  • Palmer, S. J. and Presley, B.J. (1993). Mercury bioaccumulation by shrimp (Penaeus aztecus) transplanted to Lavaca Bay, Texas. Mar. Pollut. Bull. 26(10), 564–6.

    Google Scholar 

  • Pastor, A., Hernández, F. Peris, M.A. Beltrán, J. Sancho, J.V. and Castillo, M.T. (1994). Levels of heavy metals in some marine organisms from the western Mediterranean Area (Spain). Mar. Pollut. Bull. 28(1), 50–3.

    Google Scholar 

  • Paul, S.B. and Gupta A. (1995). Trace element concentrations in two species of shrimps from Hailkandi, Assam, India. Current Science. 68(9), 967–9.

    Google Scholar 

  • Pedersen, S.N., Pedersen, K.L. Højrup, P Depledge, M.H. and Knudsen, J. (1996). Primary structures of decapod crustacean metallothioneins with special emphasis on freshwater and semi-terrestrial species. Biochem. J. 319, 999–1003.

    Google Scholar 

  • Peerzada, N., Nojok, M. and Lee, C. (1992). Distribution of heavy metals in prawns from northern territory, Australia. Mar. Pollut. Bull. 24(8), 416–8.

    Google Scholar 

  • Pelgrom, S.M.G.J., Lock, R.A.C. Balm, P.H.M. Wendelaar-Bonga S.E. (1995). Effects of combined waterborne Cd and Cu exposures on ionic composition and plasma cortisol in tilapia Oreochromis mossambicus. Comp. Biochem. Physiol., 111C(2), 227–35.

    Google Scholar 

  • Phillips, D.J.H. (1980). Quantitative Aquatic Biological Indicators: their use to Monitor Trace Metal and Organochlorine pollution. 488pp. London, Applied Science Publishers Ltd.

    Google Scholar 

  • Piedad-Pascual, E. (1989). Mineral requirements of Penaeids. Adv. in Trop. Aquacul. 9, 309–18.

    Google Scholar 

  • Pourang, N. and Amini G. (2001). Distribution of trace elements in tissues of two shrimp species from Persian Gulf and effects of storage temperature on elements transportation. Water Air Soil Pollut. 129, 229–43.

    Google Scholar 

  • Pourang N., Dennis, J.H. and Ghourchian H. (2004). Distribution of heavy metals in Penaeus semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage. Environ. Monit. Assess. In Press.

  • Prosi, F. (1989). Factors controlling biological availability and toxic effects of lead in aquatic organisms. Total Environ. 79, 157–69.

    Google Scholar 

  • Sadiq, M., Zaidi, T.H. Hoda, A. and Mian, A.A. (1982). Heavy metal concentrations in shrimp, crab and sediment obtained from AD-Dammam sewage outfall area. Bull. Environm. Contam. Toxicol. 29, 313–9.

    Google Scholar 

  • Rahaman, M., Yasmin, L. Kamal, M. Mazid, M.A. and Nazrul Islam Md. (2001). Effect of delayed icing on the quality changes in brackish water shrimp Penaeus monodon during ice storage. Pak. J. Biol. Sci. 4(11), 1390–4.

    Google Scholar 

  • Roesijadi, G. (1982). Uptake and incorporaton of mercury into mercury-binding proteins of gills of Mytilus edulis as a function of time. Mar. Biol. 66,151–7.

    Google Scholar 

  • Roesijadi G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxic. 22, 81–114.

    Google Scholar 

  • Roesijadi, G. and Robinson, W.E. (1994). Metal regulation in aquatic animals: mechanisms of uptake, accumulation, and release. Aquatic toxicology. Molecular, biochemical, and cellular perspectives. pp. 387–420 Boca Raton, Fla. Lewis Publishers.

    Google Scholar 

  • Roesijadi, G. (1996) Metallothionein and its role in toxic metal regulation. Comp. Biochem. and Physiol. 113C(2), 117–23

    Google Scholar 

  • Schlenk, D., Ringwood, A.H. Brouwer-Hoexum, T. and Brouwer, M. (1993). Crustaceans as models for metal metabolism: II. Induction and characterization of metallothionein isoforms from the blue crab (Callinectes sapidus). Mar. Environ. Res. 35, 7–11.

    Google Scholar 

  • Serra, R., Carpené, E. Marcantonio, E. and Isani, G. (1995). Cd accumulation and Cd-binding proteins in the bivalve Scapharca inaequivalvis. Comp. Biochem. Physiol. 111C(2), 165–74.

    Google Scholar 

  • Simkiss, K. and Taylor M.G. (1995). Transport of metals across membranes. Metal speciation and bioavailability in aquatic systems. PP. 1–44 Chichester John Wiley and Sons Ltd.

  • Steenkamp, V. E., du Preeze, H.H. Schoonbee, H.J. and van Eden, P.H. (1994). Bioaccumulation of manganese in selected tissues of the freshwater crab, Potamonautes warreni (Calman), from industrial and mine-polluted freshwater ecosystems. Hydrobiologia 288, 137–50.

    Google Scholar 

  • Suzuki, K.T., Someya, A. Komada, Y. and Ogra, Y. (2002). Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice. J. Inorg. Biochem. 88, 173–82.

    Google Scholar 

  • Viarengo, A., Ponzano, E. Dondero, F. and Fabbri, R. (1997). A Simple spectrophotometric method for metallothionein evaluation in marine organisms: an application toMediterranean and Antarctic Molluscs. Mar. Environ. Res. 44(1), 69–84.

    Google Scholar 

  • Voloshko, L.N. and Gavrilova, O.V. (1993). Response of Anabaena variabilis to zinc ion. Hydrobiologia, 30, 39–44.

    Google Scholar 

  • Waalkes, M. P. and Goering, P.L. (1990). Metallothionein and other cadmium-binding proteins: recent developments. Chem. Res. Toxicol. 3(4), 281–8.

    Google Scholar 

  • Weeks, J. M., Rainbow, P.S. and Moore, P.G. (1992). The loss, uptake and tissue distribution of copper and zinc during the moult cycle in an ecological series of talirid amphipods (Crustacea: Amphipoda). Hydrobiologia, 245, 15–25.

    Google Scholar 

  • White, S.L. and Rainbow, P.S (1986). A Preliminary Study of Cu-, Cd-and Zn-binding components in the Hepatopancreas of Palaeman elegans (Crustacea: Decapoda). Comp. Biochem. and Physiol. 83C(1): 111–6.

    Google Scholar 

  • Whyte, J.N.C., Boutillier J.A. (1991). Concentrations of inorganic elements and fatty acids in geographic populations of the spot prawn Pandalus platyceros. Can. J. Fish. Aq. Sci. 48, 382–90.

    Google Scholar 

  • Williamson, R.B., Wilcocks R.J. (1994). The distribution and fate of contaminants in estuarine sediments. Recommendations for Environmental Monitoring and Assessment. Technical Publication No. 47, Auckland, New Zealand: Auckland Regional Council.

    Google Scholar 

  • Wright, D.A. (1977). The effect of salinity on cadmium uptake by tissues of the shore crab, Carcinus maenas (L.). J. Exp. Biol. 67, 137–46.

    Google Scholar 

  • Zafarullah, M, Olsson, P.E. and Gedamu, L. (1989). Rainbow trout metallothionein gene structure and regulation. Oxford Surv. Eukaryot. Genes, 6, 11–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourang, N., Dennis, J.H. & Ghourchian, H. Tissue Distribution and Redistribution of Trace Elements in Shrimp Species with the Emphasis on the Roles of Metallothionein. Ecotoxicology 13, 519–533 (2004). https://doi.org/10.1023/B:ECTX.0000037189.80775.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ECTX.0000037189.80775.9c

Navigation