Skip to main content
Log in

Quantum Collapse, Consciousness and Superluminal Communication

  • Published:
Foundations of Physics Letters

Abstract

The relation between quantum collapse, consciousness and superluminal communication is analyzed. As we know, quantum collapse, if exists, can result in the appearance of quantum nonlocality, and requires the existence of a preferred Lorentz frame. This may permit the realization of quantum superluminal communication (QSC), which will no longer result in the usual causal loop in case of the existence of a preferred Lorentz frame. The possibility of the existence of QSC is further analyzed under the assumption that quantum collapse is a real process. We demonstrate that the combination of quantum collapse and the consciousness of the observer will permit the observer to distinguish nonorthogonal states in principle. This provides a possible way to realize QSC. Some implications of the existence of QSC are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777-780 (1935).

    Article  ADS  Google Scholar 

  2. J. S. Bell, Physics 1, 195(1964).

    Google Scholar 

  3. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1904(1982).

    ADS  MathSciNet  Google Scholar 

  4. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 81, 5039-5043 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, Phys. Rev. A 59, 4150-4163 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Nature 403, 515-519 (2000).

    Article  ADS  Google Scholar 

  7. A. Shimony, in Quantum Concepts in Space and Time, P. Penrose and C. Isham, ed. (Claredon, Oxford, 1996), pp 182.

    Google Scholar 

  8. Y. Aharonov and D. Z. Albert, Phys. Rev. D 24 359(1981).

    Article  ADS  Google Scholar 

  9. J. S. Bell, in The Ghost In the Atom, P. Davis and J. Brown, eds. (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  10. L. Hardy, Phys. Rev. Lett. 68, 2981-2984 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. J. Squires, Phys. Lett. A 163, 356-358 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Percival, Phys. Lett. A 244, 495-501 (1998).

    Article  ADS  Google Scholar 

  13. I. Percival, LANL e-print quant-ph/9906005 (1999).

  14. Gao Shan, LANL e-print quant-ph/9906113 (1999).

  15. Gao Shan, Quantum Motion and Superluminal Communication, (Chinese BT Press, Beijing, 2000).

    Google Scholar 

  16. G. Auletta, Foundations and Interpretation of Quantum Mechanics (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  17. It should be denoted that we can also stipulate that the simultaneity of the collapse of wave function possesses Lorentz invariance. This convention holds the absoluteness of simultaneity, and may have some advantages over the standard convention [18–20].

  18. Chang T, J. Phys. A, 12, L203(1979).

    Article  ADS  Google Scholar 

  19. P. Caban and J. Rembielinski, Phys. Rev. A 59, 4187-4196 (1999).

    Article  ADS  Google Scholar 

  20. Rui Qi, LANL e-print quant-ph/0210021 (2002).

  21. A. Einstein, Relativity: The Special and The General Theory, 1916, 1920, 1952 (1954).

  22. N. Herbert, Found. Phys. 12, 1171(1982).

    Article  ADS  Google Scholar 

  23. W. K. Wootters and W. H. Zurek, Nature 299, 802(1982).

    Article  ADS  Google Scholar 

  24. P. H. Eberhard, Nuovo Cimento B 46, 392(1978)

    Article  ADS  MathSciNet  Google Scholar 

  25. G. C. Ghirardi, A. Rimini, and T. Weber, Lett. Nuovo Cimento 27, 293(1980).

    Article  MathSciNet  Google Scholar 

  26. P. Busch, LANL e-print quant-ph/9604014 (1996).

  27. B. S. DeWitt, Phys. Rev. 160, 1113(1967).

    Article  ADS  Google Scholar 

  28. J. B. Hartle and S. W. Hawking, Phys. Rev. 28, 2960(1983).

    ADS  MathSciNet  Google Scholar 

  29. G. C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D 34 470-491 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Pearle, Phys. Rev. A 39, 2277-2289 (1989).

    Article  ADS  Google Scholar 

  31. L. Diosi, Phys. Rev. A, 40, 1165-1174 (1989).

    Article  ADS  Google Scholar 

  32. G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42 78-89 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  33. I. C. Percival, Proc. Roy. Soc. Lond. A 447, 189-209 (1994).

    Article  ADS  Google Scholar 

  34. R. Penrose, Gen. Rel. and Grav. 28, 581-600 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  35. L. P. Hughston, Proc. Roy. Soc. Lond. A 452, 953(1996).

    Article  ADS  MathSciNet  Google Scholar 

  36. D. I. Fivel, LANL e-print quant-ph/9710042 (1997).

  37. S. L. Adler and T. A. Brun, J. Phys. A 34, 4797-4809 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  38. Gao Shan, Physics Essays 14 (1), 37-48 (2001).

    Article  ADS  Google Scholar 

  39. Gao Shan, Quantum (Tsinghua University Press, Beijing, 2003).

    Google Scholar 

  40. In [15, 38, 39], a theory of discontinuous motion of particles is presented. The analysis implies that what quantum mechanics describes is discontinuous motion of particles. The logical basis of discontinuous motion is also given [39, 41].

  41. Gao Shan, LANL e-print physics/0209015 (2002).

  42. H. Everett, Rev. Mod. Phys. 29, 454-462 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  43. B. S. DeWitt and N. Graham, eds. The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1973).

    Google Scholar 

  44. D. Deutsch, Int. J. Theo. Phys. 24, 1-41 (1985).

    Article  MathSciNet  Google Scholar 

  45. D. Guilini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatiscu, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, New York, 1996).

    Book  Google Scholar 

  46. W. H. Zurek, Phil. Trans. Roy. Soc. Lond. A 356, 1793-1820 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  47. D. Albert, Quantum Mechanics and Experience (Harvard University Press, Cambridge, 1992).

    Google Scholar 

  48. It should be denoted that Squires also noticed the relationship between the explicit collapse and superluminal signaling under the well-accepted assumption from a slightly different point of view [11].

  49. D. Bohm, Phys. Rev. 85, 166-193 (1952).

    Article  ADS  Google Scholar 

  50. D. Bohm and B. J. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory (Routledge, London, 1993).

    Google Scholar 

  51. Some possible evidences have indicated that the human beings in some special states may satisfy the “QSC condition” and achieve QSC [15, 52–60].

  52. T. D. Duane and T. Behrendt, Science 150, 367(1965).

    Article  ADS  Google Scholar 

  53. R. Targ and H. Puthoff, Nature 252, 602-607 (1974).

    Article  ADS  Google Scholar 

  54. D. I. Radin and R. D. Nelson, Found. Phys. 19(12), 1499-1514 (1989).

    Article  ADS  Google Scholar 

  55. J. Grinberg-Zylberbaum, D. Dalaflor, L. Attie, and A. Goswami, Physics Essays 7, 422(1994).

    Article  ADS  Google Scholar 

  56. J. Wackermann, C. Seiter, H. Keibel, and H. Walach, Neuroscience Letters 336, 60-64 (2003).

    Article  Google Scholar 

  57. In practical situation, a few photons may be needed [58, 59]. This doesn't influence the scheme.

  58. F. Rieke and D. A. Baylor, Rev. Mod. Phys. 70, 1027(1998).

    Article  ADS  Google Scholar 

  59. F. H. Thaheld, Phys. Lett. A 273, 232-234 (2000).

    Article  ADS  Google Scholar 

  60. G. Ghirardi, Phys. Lett. A 262, 1-14 (1999).

    Article  ADS  Google Scholar 

  61. In real experiments, conscious perception may be more accurately described by the EEG recording of the conscious being, and the “QSC condition” can also be strictly stated using the corresponding EEG recording.

  62. N. Bohr, Nature 121, 580-590 (1927).

    Article  ADS  Google Scholar 

  63. John von Neumann, Mathematical Foundations of Quantum Mechanics, (Princeton University Press, Princeton, 1955).

    MATH  Google Scholar 

  64. E. P. Wigner, Symmetries and Reflections (Indiana University Press, Bloomington and London, 1967), pp 171-184.

    Google Scholar 

  65. S. Weinberg, Dreams of a Final Theory (Pantheon Books, New York, 1992).

    Google Scholar 

  66. N. Gisin, Phys. Lett. A 143, 1-2 (1990)

    Article  ADS  Google Scholar 

  67. M. Czachor, Found. Phys. Lett. 4, 351(1991).

    Article  MathSciNet  Google Scholar 

  68. M. Czachor, LANL e-print quant-ph/9501007 (1995)

  69. Gao Shan, CERN preprint EXT-2003-061 (2003).

  70. Gao Shan, The Noetic Journal 3(3), 233-235 (2002).

    Google Scholar 

  71. Gao Shan, NeuroQuantology 1, 4-9 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, G. Quantum Collapse, Consciousness and Superluminal Communication. Found Phys Lett 17, 167–182 (2004). https://doi.org/10.1023/B:FOPL.0000019654.91603.3c

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOPL.0000019654.91603.3c

Navigation