Skip to main content
Log in

Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents a systematical computational study of the effect of microstructures of materials reinforced with brittle hard particles on their fracture behavior and toughness. Crack growth in particle-reinforced materials (here, in high speed steels) with various artificially designed arrangements of brittle inclusions is simulated using microstructure-based finite element meshes and an element elimination method. The following types of brittle inclusions arrangements are considered: (simple microstructures) net-like continuous, band-like, random with different inclusion sizes, and (complex microstructures) layered and clustered arrangements, with different inclusion sizes and orientations. Crack paths, force-displacement curves, fracture toughness and fractal dimension of fracture surfaces are determined numerically for each microstructure of the materials. It is demonstrated that extensive crack deviations from the initial cracking directions and an increase in the fracture toughness can most efficiently be achieved by using complex microstructures, such as alternated layers of fine and coarse inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, L.M. (1981). Short Rod and Short Bar Fracture Toughness Specimen Geometries and Test Methods for Metallic Materials. Fracture Mechanics ASTM STP 743, 456–475.

    Google Scholar 

  • Berns, H., Broeckmann, C. and Weichert, D. (1997). Fracture of Hot Formed Ledeburitic Chromium Steels. Engineering Fracture Mechanics 58(4), 311–325.

    Article  Google Scholar 

  • Berns, H., Melander, A., Weichert, D., Asnafi, N., Broeckmann, C. and Gross-Weege, A. (1998). A new material for cold forging tool. Comput Mater Sci 11, 166–180.

    Article  CAS  Google Scholar 

  • Broberg, K.B. (1997). The Cell Model of Materials. Computational Mechanics 19(7), 447–452.

    Google Scholar 

  • Broeckmann, C. (1994). Bruch karbidreicher Stähle-Experiment und FEM-Simulation unter Berücksichtigung des Gefüges, Dissertation, Ruhr-Universitaet Bochum.

  • Carter, B.J., Wawrzynek, P.A. and Ingraffea, A.R. (2000). ‘Automated 3D Crack Growth Simulation’ Gallagher Special Issue of Int. J. Num. Meth. Engng. Vol. 47, pp. 229–253.

    Article  Google Scholar 

  • Gross-Weege, A. Weichert, D. and Broeckmann, C. (1996). Finite Element simulation of crack initiation in hard two-phase materials. Comput Mat Sci 5, 126–142.

    CAS  Google Scholar 

  • Iung, I., Petitgand, H., Grange, M. and Lemaire, E. (1996). Mechanical behaviour of multiphase materials Numerical simulations and experimental comparisons, Proc IUTAM Symposium on Micromechanics of Plasticity and Damage in Multiphase Materials, Kluwer, 99-106.

  • Le Calvez, Ch., Ponsot, A., Mishnaevsky, L. Jr., Iturizza, I., Rodriguez Ibabe, J.M., Lichtenegger, G. and Schmauder, S. (2000). Micromechanical Mechanisms of Strength and Damage of Tool Steels under Static and Cyclic Loading, CLI, Le Creusot, France. Final Reports on ECSC RTD Project.

  • Lehmann, A. (1995). Modellierung des Bruchverhaltens von Schnellarbeitsstählen unter Beachtung bauteilspezifischer Einflüsse, Diplomarbeit, TU Bergakademie Freiberg.

  • Lippmann, N. (1995). Beitrag zur Untersuchung des Bruchverhaltens von Werkzeugen aus Schnellarbeitsstählen unter statischer Beanspruchung, Dissertation, Freiberg.

  • Lippmann, N., Lehmann, A., Steinkopff, Th. and Spies, H.-J. (1996). Modelling the Fracture Behaviour of High Speed Steels under Static Loading. Comp. Mat. Sci. 7, 123–130.

    Article  CAS  Google Scholar 

  • Mishnaevsky, L. Jr. (1998). Damage and fracture of heterogeneous materials. Balkema, Rottterdam.

    Google Scholar 

  • Mishnaevsky, L. Jr. (1997). Methods of the Theory of Complex Systems in Modelling of Fracture: a Brief Review. Eng. Fract. Mech. 56(1), 47–56.

    Google Scholar 

  • Mishnaevsky, L. Jr. (1996). Determination for the Time to Fracture of Solids. Int. J. Fracture 79(4), 341–350.

    CAS  Google Scholar 

  • Mishnaevsky, L. Jr. and Schmauder, S. (2001). Continuum Mesomechanical Finite Element Modeling in Materials Development: a State-of-the-Art Review. Applied Mechanics Reviews 54(1), 49–69.

    Google Scholar 

  • Mishnaevsky, L. Jr. and Shioya, T. (2001). Optimization of Materials Microstructures: Information Theory Approach, Journal of the School of Engineering, The University of Tokyo, Vol. 48, pp. 1–13.

    Google Scholar 

  • Mishnaevsky, L. Jr. and Schmauder, S. (1999). SEM-in-situ-Experiments on the Deformation and Fracture of Cold Work and High Speed Steels, Report for Boehler Edelstahl GmbH, MPA, 1999, 35 p.

  • Mishnaevsky, L. Jr. and Schmauder, S. (1999). Optimization of Fracture Resistance of Ledeburitic Tool Steels: a Fractal Approach ‘Steels and Materials for Power Plants’. (Edited by P. Neumann et al.), Proceedings of EUROMAT-99 (European Congress on Advanced Materials and Processes, Munich), Vol. 7, Wiley-VCH Verlag, Weinheim.

    Google Scholar 

  • Mishnaevsky, L. Jr., Lippmann, N. and Schmauder, S. (2003). Micromechanisms and Modelling of Crack Initiation and Growth in Tool Steels: Role of Primary Carbides. Zeitschrift f. Metallkunde (Int. J. Materials Research) 94(6), 676–681.

    CAS  Google Scholar 

  • Mishnaevsky, L. Jr., Lippmann, N. and Schmauder, S. (2001). Computational Design of Multiphase Materials at Mesolevel, ASME International Mechanical Engineering Congress and Exposition, November 11-16, New York, CD-ROM Proceedings, Vol. 2.

  • Mishnaevsky, L. Jr., Lippmann, N. and Schmauder, S. (2001). Experimental-Numerical Analysis of Mechanisms of Damage Initiation in Tool Steels, Proc. 10th International Conference Fracture, 3-7 Dec Honolulu, USA, CD-ROM.

  • Mishnaevsky, L. Jr., Lippmann, N. and Schmauder, S. (2000). Mesomechanical Simulation of Crack Propagation in Real and Quasi-Real Idealized Microstructures of Tool Steels, Proc. 13th European Conference on Fracture ‘Fracture Mechanics: Applications and Challenges’, 6th-9th September, San Sebastián, Spain, CD-ROM.

  • Mishnaevsky, L. Jr., Mintchev, O. and Schmauder, S. (1998). FE-Simulation of Crack Growth Using a Damage Parameter and The Cohesive Zone Concept, In: ‘ECF 12-Fracture from Defects’, Proc. 12th European Conference on Fracture (Sheffield, 1998). Eds. M.W. Brown, E.R. de los Rios and K. J. Miller. London, EMAS, Vol. 2, pp. 1053–1059.

    Google Scholar 

  • Mishnaevsky, L. Jr., Lippmann, N. and Schmauder, S. (2003). Computational Modeling of Crack Propagation in Real Microstructures of Steels and Virtual Testing of Artificially Designed Materials. International Journal of Fracture 120(4), 581–600.

    CAS  Google Scholar 

  • Mishnaevsky, L. Jr.,Weber, U., Lippmann, N. and Schmauder, S. (2001). Computational Experiment in the Mechanics of Materials, ‘Computational Modeling of Materials, Minerals, and Metals Processing’, Proceeding TMS Conference, Eds. M. Cross, J.W. Evans, and C. Bailey, pp. 673-680.

  • Mishnaevsky, L. Jr., Dong, M., Hoenle, S. and Schmauder, S. (1999). Computational Mesomechanics of Particle-Reinforced Composites. Comp. Mater. Sci. 16(1-4), 133–143.

    CAS  Google Scholar 

  • Plankensteiner. A.F., Böhm, H.J., Rammerstorfer, F.G. and Buryachenko, V.A. (1996). Hierarchical modelling of high speed steels as layer-structured particulate MMCs, J de Physique IV, 6, 395–402.

    Google Scholar 

  • Plankensteiner, A.F., Böhm, H.J., Rammerstorfer, F.G. and Pettermann, H.E. (1998). Multiscale modelling of highly heterogeneous particulate MMCs, Proc 2nd Europ Conf Mechanics of Materials, Magdeburg, 291-298.

  • Schmauder, S. and Mishnaevsky, L. (2001). Damage in Metallic Multiphase Materials: Mechanisms and Mesomechanics, MPA Stuttgart, Preprint, 110 pp.

  • Suresh, S. (1998). Fatigue of Materials. Cambridge University Press.

  • Tvergaard, V. and Hutchinson, J.W. (1988). Effect of T-Stress on Mode I Crack Growth Resistance in a Ductile Solid.Int. J. Solids Struct. 31(6), 823–833.

    Article  Google Scholar 

  • Xia, L. and Shih, C.F. (1995). Ductile crack growth-II. Void nucleation and geometry effects on macroscopic fracture behavior. J. Mech. Phys. Solids 43(11), 1953–1981.

    Google Scholar 

  • Xia, L., Shih, C.F. and Hutchinson, J.W. (1995). A computational approach to ductile crack growth under large scale yielding conditions. J. Mech. Phys. Solids 43(3), 389–413.

    CAS  Google Scholar 

  • Xie, H. (1993). Fractals in Rock Mechanics. Balkema, Rottterdam.

    Google Scholar 

  • Weihe, S., Kröplin, B. and de Borst, R. (1998). Classification of Smeared Crack Models Based on Material and Structural Properties. Int. J. Solids and Structures 35(12), 1289–1308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishnaevsky Jr, L., Weber, U. & Schmauder, S. Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance. Int J Fract 125, 33–50 (2004). https://doi.org/10.1023/B:FRAC.0000021031.67717.9f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FRAC.0000021031.67717.9f

Keywords

Navigation