Skip to main content
Log in

Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In a remarkable series of experiments, Elssner et al. (1994) and Korn et al. (2002) observed cleavage cracking along a bimaterial interface between Nb and sapphire. The stress required for cleavage cracking is around the theoretical strength of the material. Classical plasticity models fall short to reach such a high stress level. We use the conventional theory of mechanism-based strain gradient plasticity (Huang et al., 2004) to investigate the stress field around the tip of an interface crack between Nb and sapphire. The tensile stress at a distance of 0.1 μm to the interface crack tip reaches 13.3σY, where σY is the yield stress of Nb. This stress is nearly 4 times of that predicted by classical plasticity theory (3.6σY) at the same distance to the crack tip, and is high enough to trigger cleavage cracking in materials and interfaces. This is consistent with Elssner et al.'s (1994) and Korn et al.'s (2002) experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, A. and Bassani, J.L. (2000). Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids 48, 1565–1595.

    Google Scholar 

  • Acharya, A. and Beaudoin, A.J. (2000). Grain-size effect in viscoplastic polycrystals at moderate strains. Journal of the Mechanics and Physics of Solids 48, 2213–2230.

    Google Scholar 

  • Argon, A.S., Seleznev, M.L., Shih, C.F. and Liu, X.H. (1998). Role of controlled debonding along fiber/matrix interfaces in the strength and toughness of metal matrix composites. International Journal of Fracture 93, 351–371.

    Google Scholar 

  • Arsenlis, A. and Parks, D.M. (1999). Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Materialia 47, 1597–1611.

    Google Scholar 

  • Asaro, R.J. and Needleman, A. (1985). Texture development and strain hardening in rate dependent polycrystals. Acta Metallurgica et Materialia 33, 923–953.

    Google Scholar 

  • Ashby, M.F. (1970). The deformation of plastically non-homogeneous alloys. Philosophical Magazine 21, 399–424.

    Google Scholar 

  • Atkinson, M. (1995). Further analysis of the size effect in indentation hardness tests of some metals. Journal of Materials Research 10, 2908–2915.

    Google Scholar 

  • Bagchi, A. and Evans, A.G. (1996). The mechanics and physics of thin film decohesion and its measurement. Interface Science 3, 169–193.

    Google Scholar 

  • Bagchi, A., Lucas, G.E., Suo, Z. and Evans, A.G. (1994). A new procedure for measuring the decohesion energy of thin ductile films on substrates. Journal of Materials Research 9, 1734–1741.

    Google Scholar 

  • Bailey, J.E. and Hirsch, P.B. (1960). The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philosophical Magazine 5, 485–497.

    Google Scholar 

  • Bassani, J.L. (2001). Incompatibility and a simple gradient theory of plasticity. Journal of the Mechanics and Physics of Solids 49, 1983–1996.

    Google Scholar 

  • Beaudoin, A.J. and Acharya, A. (2001). A model for rate-dependent flow of metal polycrystals based on the slip plane lattice incompatibility. Materials Science and Engineering A 309, 411–415.

    Google Scholar 

  • Beltz, G.E. and Wang, J.S. (1992). Crack direction effects along copper sapphire interfaces. Acta Metallurgica et Materialia 40, 1675–1683.

    Google Scholar 

  • Beltz G.E., Rice, J.R., Shih, C.F. and Xia, L. (1996). A self-consistent method for cleavage in the presence of plastic flow. Acta Materialia 44, 3943–3954.

    Google Scholar 

  • Bilby, B.A., Bullough, R. and Smith, E. (1955). Continuous distributions of dislocation: a new application of the methods of non-Riemannian geometry. Proceedings of the Royal Society of London A 231, 263–273.

    Google Scholar 

  • Bishop, J.F.W. and Hill, R. (1951a). A theory of plastic distortion of a polycrystalline aggregate under combined stresses. Philosophical Magazine 42, 414–427.

    Google Scholar 

  • Bishop, J.F.W. and Hill, R. (1951b). A theoretical derivation of the plastic properties of a polycrystalline face-centered metal. Philosophical Magazine 42, 1298–1307.

    Google Scholar 

  • Camacho, G.T. and Ortiz, M. (1996). Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures 33, 2899–2938

    Google Scholar 

  • Canova, G.R. and Kocks, U.F. (1984). The development of deformation textures and resulting properties of fcc metals. In C.M. Brakman, P. Jongenburger and E.J. Mittemeijer (eds.) Seventh Int. Conf. on Textures of Materials. Soc. for Materials Science. Netherlands (1984) pp. 573–579.

  • Cermelli, P. and Gurtin, M.E. (2001). On the characterization of geometrically necessary dislocations in finite plasticity. Journal of the Mechanics and Physics of Solids 49, 1539–1568.

    Google Scholar 

  • Chen, J.Y., Huang, Y. and Hwang, K.C. (1998). Mode I and Mode II plane-stress near-tip fields for cracks in materials with strain gradient effect. Key Engineering Materials 145, 19–28.

    Google Scholar 

  • Chen, J.Y., Wei, Y., Huang, Y., Hutchinson, J.W. and Hwang, K.C. (1999). The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses. Engineering Fracture Mechanics 64, 625–648.

    Google Scholar 

  • Cottrell, A.H. (1964). The mechanical Properties of Materials. J. Willey, New York p. 277.

    Google Scholar 

  • Dai, H. and Parks, D.M. (2003). Geometrically-necessary dislocation density in continuum crystal plasticity theory and FEM implementation. Unpublished manuscript.

  • De Guzman, M.S., Neubauer, G., Flinn, P. and Nix, W.D. (1993). The role of indentation depth on the measured hardness of materials. Materials Research Symposium Proceedings 308, 613–618.

    Google Scholar 

  • Douglass, M.R. (1998). Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). Annual Proceedings-Reliability Physics Symposium (Sponsored by IEEE), Mar 31-Apr 2, 1998, 9–16; also http://www.dlp.com/dlp/resources/whitepapers/pdf/ieeeir.pdf.

  • Elssner, G., Korn, D. and Rühle, M. (1994). The influence of interface impurities on fracture energy of UHV diffusion-bonded metal-ceramic bicrystals. Scripta Metallurgica et Materialia 31, 1037–1042.

    Google Scholar 

  • Eshelby, J.D. (1956). The continuum theory of lattice defects. In F.D. Seitz and D. Turnbull (eds.) Solid State Physics, Vol. 3. Academic Press, New York pp. 79–144.

    Google Scholar 

  • Evers, L.P., Parks, D.M., Brekelmans, W.A.M. and Geers, M.G.D. (2002). Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. Journal of the Mechanics and Physics of Solids 50, 2403–2424.

    Google Scholar 

  • Fleck, N.A. and Hutchinson, J.W. (1993). A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids 41, 1825–1857.

    Google Scholar 

  • Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson J.W. (1994). Strain gradient plasticity: theory and experiments. Acta Metallurgica et Materialia 42, 475–487.

    Google Scholar 

  • Fleck, N.A. and Hutchinson, J.W. (1997). Strain gradient plasticity. In J.W. Hutchinson and T.Y. Wu (eds.) Advances in Applied Mechanics, Vol. 33. Academic Press, New York pp. 295–361.

    Google Scholar 

  • Fleck, N.A. and Hutchinson, J.W. (2001). A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 49, 2245–2271.

    Google Scholar 

  • Fox, N. (1966). A continuum theory of dislocations for single crystals. Journal of Institute for Mathematics and its Applications 2, 285–298.

    Google Scholar 

  • Gao, H., Huang, Y. and Nix, W.D. (1999a). Modeling plasticity at the micrometer scale. Naturwissenschaften 86, 507–515.

    Google Scholar 

  • Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W. (1999b). Mechanism-based strain gradient plasticity-I. Theory. Journal of the Mechanics and Physics of Solids 47, 1239–1263.

    Google Scholar 

  • Gurtin, M.E. (2002). A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids 50, 5–32.

    Google Scholar 

  • Haque, M.A. and Saif, M.T.A. (2003). Strain gradient effect in nanoscale thin films. Acta Materialia 51, 3053–3061.

    Google Scholar 

  • Huang, Y., Zhang, L., Guo, T.F. and Hwang, K.C. (1995). Near tip fields for cracks in materials with strain-gradient effect. In J.R. Willis (ed.) Proceedings of IUTAM Symposium on Nonlinear Analysis of Fracture. Kluwer Academic Publishers, Cambridge, England pp. 231–242.

    Google Scholar 

  • Huang, Y., Zhang, L., Guo, T.F. and Hwang, K.C. (1997). Mixed mode near-tip fields for cracks in materials with strain gradient effects. Journal of the Mechanics and Physics of Solids 45, 439–465.

    Google Scholar 

  • Huang, Y., Chen, J.Y., Guo, T.F., Zhang, L. and Hwang, K.C. (1999). Analytical and numerical studies on mode I and mode II fracture in elastic-plastic materials with strain gradient effects. International Journal of Fracture 100, 1–27.

    Google Scholar 

  • Huang, Y., Gao, H., Nix, W.D. and Hutchinson, J.W. (2000a). Mechanism-based strain gradient plasticity-II. Analysis. Journal of the Mechanics and Physics of Solids 48, 99–128.

    Google Scholar 

  • Huang, Y., Xue, Z., Gao, H., Nix, W.D. and Xia, Z.C. (2000b). A study of microindentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research 15, 1786–1796.

    Google Scholar 

  • Huang, Y., Qu, S., Hwang, K.C., Li, M. and Gao, H. (2004). A conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity 20, 753–782.

    Google Scholar 

  • Hutchinson, J.W. (1968). Singular behavior at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids 16, 13–31.

    Google Scholar 

  • Hutchinson, J.W. (1976). Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London A 348, 101–127.

    Google Scholar 

  • Hutchinson, J.W. (1997). Linking scales in mechanics. In B.L. Karihaloo, Y.W. Mai, M.I. Ripley and R.O. Ritchie (eds.) Advances in Fracture Research. Pergamon Press, Amsterdam pp. 1–14.

    Google Scholar 

  • Hwang, K.C., Jiang, H., Huang, Y., Gao, H. and Hu, N. (2002). A finite deformation theory of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 50, 81–99.

    Google Scholar 

  • Hwang, K.C., Jiang, H., Huang, Y. and Gao, H. (2003). Finite deformation analysis of mechanism-based strain gradient plasticity: torsion and crack tip field. International Journal of Plasticity 19, 235–251.

    Google Scholar 

  • Jiang, H., Huang, Y., Zhuang, Z. and Hwang, K.C. (2001). Fracture in mechanism-based strain gradient plasticity. Journal of the Mechanics and Physics of Solids 49, 979–993.

    Google Scholar 

  • Kocks, U.F. (1970). The relation between polycrystal deformation and single crystal deformation. Metallurgical and Materials Transactions 1, 1121–1144.

    Google Scholar 

  • Kok, S., Beaudion, A.J. and Tortorelli, D.A. (2002a). A polycrystal plasticity model based on the mechanical threshold. International Journal of Plasticity 18, 715–741.

    Google Scholar 

  • Kok, S., Beaudoin, A.J. and Tortorelli, D.A. (2002b). On the development of stage IV hardening using a model based on the mechanical threshold. Acta Materialia 50, 1653–1667.

    Google Scholar 

  • Kok, S., Beaudoin, A.J., Tortorelli, D.A. and Lebyodkin, M. (2002c). A finite element model for the Portevin-Le Chatelier effect based on polycrystal plasticity. Modelling and Simulation in Materials Science and Engineering 10, 745–763.

    Google Scholar 

  • Kondo, K. (1952). On the geometrical and physical foundations of the theory of yielding. Proceedings Japan National Congress of Applied Mechanics 2, 41–47.

    Google Scholar 

  • Kondo, K. (1955). Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. In K. Kondo (ed.) RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Science by Means of Geometry, Vol. 1. Gakuyusty Bunken Fukin-Kay, Tokyo.

    Google Scholar 

  • Korn, D., Elssner, G., Fischmeister, H.F. and Rühle, M. (1992). Influence of interface impurities on the fracture energy of UHV bonded niobium sapphire bicrystals. Acta Metallurgica et Materialia 40, S355–S360. Suppl. S.

    Google Scholar 

  • Korn, D., Elssner, G., Cannon, R.M. and Rühle, M. (2002). Fracture properties of interfacially doped Nb-Al 2 O 3 bicrystals: I, fracture characteristics. Acta Materialia 50, 3881–3901.

    Google Scholar 

  • Kröner, E. (1960). Allgemeine kontinuumstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis 4, 273–334.

    Google Scholar 

  • Lee, E.H. (1969). Elastic-plastic deformation at finite strains. Journal of Applied Mechanics 36, 1–6.

    Google Scholar 

  • Lloyd, D.J. (1994). Particle reinforced aluminum and magnesium matrix composites. International Materials Reviews 39, 1–23.

    Google Scholar 

  • Lou, J., Shrotriya, P., Buchheit, T., Yang, D and Soboyejo, W.O. (2003). Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures. Journal of materials Research 18, 719–728.

    Google Scholar 

  • Ma, Q. and Clarke, D.R. (1995). Size dependent hardness of silver single crystals. Journal of Materials Research 10, 853–863.

    Google Scholar 

  • McElhaney, K.W., Vlasssak, J.J. and Nix, W.D. (1998). Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research 13, 1300–1306.

    Google Scholar 

  • Mindlin, R.D. (1964). Micro-structure in linear elasticity. Archive Rational Mechanics Analysis 16, 51–78.

    Google Scholar 

  • Needleman, A. (1987). A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 54, 525–531.

    Google Scholar 

  • Needleman, A. and van der Giessen, E. (2001). Discrete dislocation and continuum descriptions of plastic flow. Material Science and Engineering A 309, 1–13.

    Google Scholar 

  • Nix, W.D. (1989). Mechanical properties of thin films. Materials Transactions 20A, 2217–2245.

    Google Scholar 

  • Nix, W.D. (1997). Elastic and plastic properties of thin films on substrates: nanoindentation techniques. Materials Science and Engineering A 234, 37–44.

    Google Scholar 

  • Nix, W.D. and Gao, H. (1998). Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids 46, 411–425

    Google Scholar 

  • Nye, J.F. (1953). Some geometrical relations in dislocated crystals. Acta Metallurgica et Materialia 1, 153–162.

    Google Scholar 

  • O'Dowd, N.P., Stout, M.G. and Shih, C.F. (1992). Fracture-toughness of alumina niobium interfaces-experiments and analyses. Philosophical Magazine A 66, 1037–1064.

    Google Scholar 

  • Oh, T.S., Cannon, R.M. and Ritchie, R.O. (1987). Subcritical crack growth along ceramic-metal interfaces. Jom-Journal of the Minerals, Metals and Materials Society 39, A57–A57.

    Google Scholar 

  • Poole, W.J., Ashby, M.F. and Fleck, N.A. (1996). Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Materialia 34, 559–564.

    Google Scholar 

  • Qiu, X., Huang, Y., Nix, W.D., Hwang, K.C. and Gao, H. (2001). Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Materialia 49, 3949–3958.

    Google Scholar 

  • Qiu, X., Huang, Y., Wei, Y., Gao, H. and Hwang, K.C. (2003). The flow theory of mechanism-based strain gradient plasticity. Mechanics of Materials 35, 245–258.

    Google Scholar 

  • Rice, J.R. and Rosengren, G.F. (1968). Plane strain deformation near a crack tip in a power law hardening material. Journal of the Mechanics and Physics of Solids 16, 1–12.

    Google Scholar 

  • Saha, R., Xue, Z., Huang, Y. and Nix, W.D. (2001). Indentation of a soft metal film on a hard substrate: strain gradient hardening effects. Journal of the Mechanics and Physics of Solids 49, 1997–2014.

    Google Scholar 

  • Shi, M., Huang, Y., Gao, H. and Hwang, K.C. (2000a). Non-existence of separable crack tip field in mechanism-based strain gradient plasticity. International Journal of Solids and Structures 37, 5995–6010.

    Google Scholar 

  • Shi, M., Huang, Y. and Hwang, K.C. (2000b). Fracture in the higher-order elastic continuum. Journal of the Mechanics and Physics of Solids 48, 2513–2538.

    Google Scholar 

  • Shi, M., Huang, Y., Jiang, H., Hwang, K.C. and Li, M. (2001). The boundary-layer effect on the crack tip field in mechanism-based strain gradient plasticity. International Journal of Fracture 112, 23–41.

    Google Scholar 

  • Shi, M., Huang, Y. and Gao, H. (2004a). The J-integral and geometrically necessary dislocations in nonuniform plastic deformation. International Journal of Plasticity 20, 1739–1762.

    Google Scholar 

  • Shi, M., Huang, Y., Li, M. and Hwang, K.C. (2004b). On source-limited dislocations in nanoindentation. Journal of Applied Mechanics (ASME Transactions) (in press).

  • Shizawa, K. and Zbib, H.M. (1999). A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals. International Journal of Plasticity 15, 899–938.

    Google Scholar 

  • Shrotriya, P., Allameh, S.M., Lou, J., Buchheit, T. and Soboyejo, W.O. (2003). On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mechanics of Materials 35, 233–243.

    Google Scholar 

  • Steinmann, P. (1996). Views on multiplicative elastoplasticity and the continuum theory of dislocations. International Journal of Engineering Science 34, 1717–1735.

    Google Scholar 

  • Stelmashenko, N.A., Walls, A.G., Brown, L.M. and Milman, Y.V. (1993). Microindentation on Wand Mo oriented single crystals: an STM study. Acta Metallurgica et Materialia 41, 2855–2865.

    Google Scholar 

  • Stolken, J.S. and Evans, A.G. (1998). A microbend test method for measuring the plasticity length scale. Acta Materialia 46, 5109–5115.

    Google Scholar 

  • Suo, Z., Shih, C.F. and Varias, A.G. (1993). A theory for cleavage cracking in the presence of plastic flow. Acta Metallurgica et Materialia 41, 1551–1557.

    Google Scholar 

  • Suresh, S., Nieh, T.G. and Choi, B.W. (1999). Nano-indentation of copper thin films on silicon substrates. Scripta Materialia 41, 951–957.

    Google Scholar 

  • Swadener, J.G., George, E.P. and Pharr, G.M. (2002). The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids 50, 681–694.

    Google Scholar 

  • Taylor, G.I. (1934). The mechanism of plastic deformation of crystals. Part I.–theoretical. Proceedings of the Royal Society of London A 145, 362–387.

    Google Scholar 

  • Taylor, G.I. (1938). Plastic strain in metals. Journal of the Institute of Metals 62, 307–324.

    Google Scholar 

  • Tvergaard, V. and Hutchinson, J.W. (1992). The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids 40, 1377–1397.

    Google Scholar 

  • Tvergaard, V. and Hutchinson, J.W. (1993). The influence of plasticity on mixed mode interface toughness. Journal of the Mechanics and Physics of Solids 41, 1119–1135.

    Google Scholar 

  • Tymiak, N.I., Kramer, D.E., Bahr, D.F., Wyrobek, T.J. and Gerberich, W.W. (2001). Plastic strain and strain gradients at very small indentation depths. Acta Materialia 49, 1021–1034.

    Google Scholar 

  • van der Giessen, E., Deshpande, V.S., Cleveringa, H.H.M. and Needleman, A. (2001). Discrete dislocation plasticity and crack tip fields in single crystals. Journal of the Mechanics and Physics of Solids 49, 2133–2153.

    Google Scholar 

  • Volokh, K.Yu. and Hutchinson, J.W. (2002). Are lower-order gradient theories of plasticity really lower order? Journal of Applied Mechanics 69, 862–864.

    Google Scholar 

  • Wang, J.S. and Anderson, P.M. (1991). Fracture behavior of embrittled FCC metal bicrystals and its misorientation dependence. Acta Metallurgica et Materialia 39, 779–792.

    Google Scholar 

  • Wei, Y. and Hutchinson, J.W. (1997). Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. Journal of the Mechanics and Physics of Solids 45, 1253–1273.

    Google Scholar 

  • Wei, Y. and Hutchinson, J.W. (1999). Models of interface separation accompanied by plastic dissipation at multiple scales. International Journal of Fracture 95, 1–17.

    Google Scholar 

  • Xia, Z.C. and Hutchinson, J.W. (1996). Crack tip fields in strain gradient plasticity. Journal of the Mechanics and Physics of Solids 44, 1621–1648.

    Google Scholar 

  • Xu, X.-P. and Needleman, A. (1994). Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42, 1397–1434.

    Google Scholar 

  • Yun, G., Qin, J., Huang, Y. and Hwang, K.C. (2004). A study of lower-order strain gradient plasticity theories by the method of characteristics. European Journal of Mechanics A/Solids (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, S., Huang, Y., Jiang, H. et al. Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. International Journal of Fracture 129, 199–220 (2004). https://doi.org/10.1023/B:FRAC.0000047786.40200.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FRAC.0000047786.40200.f8

Navigation