Skip to main content
Log in

Mutational Load and the Transition between Diploidy and Haploidy in Experimental Populations of the Yeast Saccharomyces cerevisiae

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mutations were accumulated over hundreds of generations in a mutator strain of yeast in a constant laboratory environment. This ensured that mutations were frequent and that the quality of environment remained unchanged. Mutations were accumulated in asexual populations of diploids but their impact on fitness was tested both for the diploid clones and for haploid clones derived from them. Dozens of harmful and lethal mutations accumulated in diploids, but important phenotypic traits, such as maximum growth rate, did not deteriorate by more than 10%. There were no signs of decline in population size. In strong contrast, the populations of haploids derived from the diploids suffered from high mortality; their density was reduced by more than three orders of magnitude. These findings indicate how ineffective natural selection can be in removing deleterious mutations from populations of clonally reproducing diploids. They also suggest that phenotypic assays of heterozygous diploids may be of little value as indicators of increasing genetic degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, G., 1982. The Masterpiece of Nature. University of California Press, Berkeley.

    Google Scholar 

  • Bell, G., 1994. The comparative biology of the alternation of generations. Lect. Math. Life Sci. 25: 1–26.

    Google Scholar 

  • Boeke, J.D., F. Lacroute & G.R. Fink, 1984. A positive selection for mutants lacking orotidine 5′-phosphate decarboxylase activity in yeast. Mol. Gen. Genet. 197: 345–346.

    Article  PubMed  Google Scholar 

  • Charlesworth, B. & K.A. Hughes, 2000. The maintenance of genetic variation in life-history traits, pp. 369–392 in Evolutionary Genetics: From Molecules to Morphology, edited by R.S. Singh & C.B. Krimbas. Cambridge University Press, Cambridge.

    Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An introduction to population genetics theory. Harper and Row, New York.

    Google Scholar 

  • Deng, H.-W. & M. Lynch, 1997. Inbreeding depression and inferred deleterious-mutation parameters in daphnia. Genetics 147: 147–155.

    PubMed  Google Scholar 

  • Drake, J.W., B. Charlesworth, D. Charlesworth & J.F. Crow, 1998. Rates of spontaneous mutations. Genetics 148: 1667–1686.

    PubMed  Google Scholar 

  • Galitski, T., A.J. Saldanha, C.A. Styles, E.S. Lander & G.R. Fink, 1999. Ploidy regulation of gene expression. Science 285: 251–254.

    Article  PubMed  Google Scholar 

  • Garcia-Dorado, A. & A. Caballero, 2000. On the average coefficient of dominance of deleterious spontaneous mutations. Genetics 155: 1991–2001.

    PubMed  Google Scholar 

  • Gilligan, D.M., L.M. Woodwarth, M.E. Montgomery et al., 1997. Is mutation accumulation a threat to the survival of endangered populations? Conserv. Biol. 11: 1235–1241.

    Article  Google Scholar 

  • Haigh, J., 1978. The accumulation of deleterious genes in a population. Theor. Popul. Biol. 14: 251–267.

    PubMed  Google Scholar 

  • Haldane, J.B.S., 1924. A mathematical theory of natural and artificial selection: I. Trans. Phil. Soc. 23: 19–41.

    Google Scholar 

  • Jenkins, C.D. & M. Kirkpatrick, 1995. Deleterious mutation and the evolution of genetic life cycles. Evolution 49: 512–520.

    Google Scholar 

  • Johnston, M. & D.J. Schoen, 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226–229.

    Google Scholar 

  • Keightley, P.D. & A. Eyre-Walker, 1999. Terumi Mukai and the riddle of deleterious mutation rates. Genetics 153: 515–523.

    PubMed  Google Scholar 

  • Kolodner, R., 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10: 1433–1442.

    PubMed  Google Scholar 

  • Kondrashov, A.S. & J.F. Crow, 1991. Haploidy or diploidy: which is better. Nature 351: 314–315.

    Article  PubMed  Google Scholar 

  • Korona, R., 1999a. Genetic load of the yeast Saccharomyces cerevisiaeunder diverse environmental conditions. Evolution 53: 1966–1971.

    Google Scholar 

  • Korona, R., 1999b. Unpredictable fitness transitions between haploid and diploid strains of genetically loaded yeast Saccharomyces cerevisiae.Genetics 151: 77–85.

  • Kramer, W., B. Kramer, M.S. Williamson & S. Fogel, 1989. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to prokaryotic MutL and HexB. J. Bacter. 171: 5339–5346.

    Google Scholar 

  • Lande, R., 1994. Risk of population extinction from new deleterious mutations. Evolution 48: 1460–1469.

    Google Scholar 

  • Lynch, M., J. Conery & R. Burger, 1995. Mutational meltdowns in sexual populations. Evolution 49: 1067–1088.

    Google Scholar 

  • Lynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva & J. Villis, 1999. Spontaneous deleterious mutation. Evolution 53: 645–663.

    Google Scholar 

  • Lynch, M., R. Burger, D. Butcher & W. Gabriel, 1993. The mutational meltdown in asexual populations. Heredity 84: 339–344.

    Google Scholar 

  • Mable, B. & S.P. Otto}, 1998. The evolution of life cycles with haploid and diploid phases. BioEssays 20: 453–462.

    Article  Google Scholar 

  • Marsischky, G.T., N. Filosi, M.F. Kane & R. Kolodner, 1996. Redundancy of Saccharomyces cerevisiaeMSH3 and MSH6 in MSH2 dependent mismatch repair. Genes Dev. 10: 407–420.

    PubMed  Google Scholar 

  • Mortimer, R.K., 2000. Evolution and variation of the yeast (Saccharomyces) genome. Genome Res. 10: 403–409.

    Article  PubMed  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster.Genetics 72: 335–355.

    PubMed  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mut. Res. 1: 2–9.

    Google Scholar 

  • Otto, S.P. & D.B. Goldstein, 1992. Recombination and the evolution of diploidy. Genetics 131: 745–751.

    PubMed  Google Scholar 

  • Otto, S.P. & J.C. Marks, 1996. Mating systems and the evolutionary transition between haploidy and diploidy. Biol. J. Linn. Soc. 57: 197–218.

    Article  Google Scholar 

  • Perrot, V., S. Richerd & M. Valero, 1991. Transition from haploidy to diploidy. Nature 351: 315–317.

    Article  PubMed  Google Scholar 

  • Reenan, R.A. & R.D. Kolodner, 1992. Isolation and characterisation of two Saccharomyces cerevisiaegenes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132: 963–973.

    PubMed  Google Scholar 

  • Shabalina, S.A., L.Yu. Yampolsky & A.S. Kondrashov, 1997. Rapid decline of fitness in panmictic populations of Drosophila under relaxed selection. Proc. Natl. Acad. Sci. USA 94: 13034–13039.

    Article  PubMed  Google Scholar 

  • Sherman, F., 1991. Getting started with yeast, pp. 3–20 in Guide to Yeast Genetics and Molecular Biology, edited by C. Guthrie & G.R. Fink. Academic Press, Inc., London.

    Google Scholar 

  • Szafraniec, K., R.H. Borts & R. Korona, 2001. Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae.Proc. Nat. Acad. Sci. USA 98: 1107–1112.

    Article  PubMed  Google Scholar 

  • Szafraniec, K., D.M. Wloch, P. Sliwa, R.H. Borts & R. Korona, 2003. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae.Genet. Res. 82: 19–31.

    Article  PubMed  Google Scholar 

  • Vassilieva, L.L., A.M. Hook & M. Lynch, 2000. The fitness effects of spontaneous mutations in Caenorhabditis elegans.Evolution 54: 1234–1246.

    PubMed  Google Scholar 

  • Wach, A., A. Brachat, R. Pohlmann & P. Philippsen}, 1994. New heterologous modules for classical and PCR-based disruptions in Saccharomyces cerevisiae}.Yeast 10: 1793–1808.

    PubMed  Google Scholar 

  • Williamson, M.S., J. Game & S. Fogel, 1985. Meiotic gene conversion mutants in Saccharomyces cerevisiae.I Isolation and characterization of PMS1-1 and PMS1-2. Genetics 110: 609–646.

    PubMed  Google Scholar 

  • Winzeler, E.A., D.D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999. Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis. Science 285: 901–906.

    Article  PubMed  Google Scholar 

  • Wloch, D.M., R.H. Borts & R. Korona, 2001. Epistatic interactions of spontaneous mutations in haploid strains of the yeast Saccharomyces cerevisiae.J. Evol. Biol. 14: 310–316.

    Article  Google Scholar 

  • Wloch, D.M., K. Szafraniec, R.H. Borts & R. Korona, 2001. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae.Genetics 159: 441–452.

    PubMed  Google Scholar 

  • Zeyl, C., M. Mizesko & A.G.M. de Visser, 2001. Mutational meltdown in laboratory yeast populations. Evolution 55: 909–917.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sliwa, P., Kluz, J. & Korona, R. Mutational Load and the Transition between Diploidy and Haploidy in Experimental Populations of the Yeast Saccharomyces cerevisiae . Genetica 121, 285–293 (2004). https://doi.org/10.1023/B:GENE.0000039846.12313.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000039846.12313.98

Navigation