Skip to main content
Log in

Synthesis of heparin-like oligosaccharides on polymer supports

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The biological functions of a variety of proteins are regulated by heparan sulfate glycosaminoglycans. In order to facilitate the elucidation of the molecular basis of glycosaminoglycan-protein interactions we have developed syntheses of heparin-like oligosaccharides on polymer supports. A completely stereoselective strategy previously developed by us for the synthesis of these oligosaccharides in solution has been extended to the solid phase using an acceptor-bound approach. Both a soluble polymer support and a polyethylene glycol-grafted polystyrene resin have been used and different strategies for the attachment of the acceptor to the support have been explored. The attachment of fully protected disaccharide building blocks to a soluble support through the carboxylic group of the uronic acid unit by a succinic ester linkage, the use of trichloroacetimidates as glycosylating agents and of a functionalized Merryfield type resin for the capping process allowed for the construction of hexasaccharide and octasaccharide fragments containing the structural motif of the regular region of heparin. This strategy may facilitate the synthesis of glycosaminoglycan oligosaccharides by using the required building blocks in the glycosylation sequence. Published in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conrad HE, Heparin-Binding Proteins (Academic Press, San Diego, 1998).

    Google Scholar 

  2. Capila I, Lindhardt RJ, Heparin, Protein interactions, Angew Chem Int Ed 41, 390-412 (2002).

    Article  CAS  Google Scholar 

  3. Casu B, Lindahl U, Structure and biological interactions of heparin and heparan sulfate, Adv Carbohydr Chem Biochem 57, 159-206 (2001).

    PubMed  CAS  Google Scholar 

  4. Lindahl U, Kjellen L, The Biology of the Extracellular Matrix: Proteoglycans (Academic Press, New York, 1987).

    Google Scholar 

  5. Thunberg L, Bäckström G, Lindahl U, Further characterization of the antithrombin-binding sequence in heparin, Carbohydr Res 100, 393-410 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. Faham S, Linhardt RJ, Rees DC, Diversity does make a difference: Fibroblast growth factor-heparin interactions, Curr Opin Struct Biol 8, 578-86 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. Kreuger J, Salmivirta M, Sturiale L, Giménez-Gallego G, Lindhal U, Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2, J Biol Chem 276, 30744-52 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. Faham S, Hileman SE, Fromm JR, Lindhardt RJ, Rees DC, Heparin structure and interactions with basic fibroblast growth factor, Science 271, 1116-20 (1996).

    PubMed  CAS  Google Scholar 

  9. DiGabriele AD, Lax I, Chen DI, Svahn CM, Jaye M, Schlessinger J, Hendrickson WA, Structure of a heparin-linked biologically ac-tive dimer of fibroblast growth factor, Nature 393, 812-7 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova V, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M, Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization, Mol Cell 6, 743-50 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. Pellegrini L, Burke DF, Von Delft F, Mulloy B, Blundell TL, Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin, Nature 407, 1029-34 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. de Paz JL, Angulo J, Lassaletta JM, Nieto PM, Redondo-Horcajo M, Lozano RM, Gimenez-Gallego G, Martin-Lomas M, The activation of fibroblast growth factors by heparin: Synthesis, structure, and biological activity of heparin-like oligosaccharides, Chem-Biochem 2, 673-85 (2001).

    CAS  Google Scholar 

  13. Ojeda R, Angulo J, Nieto PM, Martin-Lomas M, The activation of fibroblast growth factors by heparin: Synthesis and structural study of rationally modified heparin-like oligosaccharides, Can J Chem 80, 673-85 (2002).

    Article  Google Scholar 

  14. Lucas R, Angulo J, Nieto PM, Martin-Lomas M, Synthesis and structural study of two new heparin-like hexasaccharides, Org Biomol Chem 1, 2253-66 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. de Paz JL, Ojeda R, Reichardt N, Martin-Lomas M, Some key experimental features of a modular synthesis of heparin-like oligosaccharides, Eur J Org Chem 3308-24 (2003).

  16. Angulo J, Nieto PM, Martin-Lomas M, A molecular dynamics description of the conformational flexibility of the L-iduronate ring in glycosaminoglycans, Chem Commun 2486-7 (2003).

  17. Angulo J, Ojeda R, de Paz JL, Lucas R, Nieto PM, Lozano RM, Redondo-Horcajo M, Gimenez-Gallego G, Martin-Lomas M, The activation of fibroblast growth factors (FGFs) by glycosaminogly-cans: Influence of the sulfation pattern on the biological activity of FGF-1, ChemBioChem 5, 55-61 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Seeberger PH, Haase WC, Solid-Phase oligosaccharides synthesis and combinatorial carbohydrate libraries, Chem Rev 100, 4349-93 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. Plante OJ, Palmacci ER, Seeberger PH, Automated solid-phase synthesis of oligosaccharides, Science 291, 1523-7 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. Palmacci ER, Plante OJ, Seeberger PH, Oligosaccharide synthesis in solution and on solid support with glycosyl phosphates, Eur J Org Chem 595-606 (2002).

  21. La Ferla B, Lay L, Guerrini M, Poletti L, Panza L, Russo G, Synthesis of disaccharidic sub-units of a new series of heparin related oligosaccharides, Tetrahedron 55, 9867-80 (1999).

    Article  CAS  Google Scholar 

  22. Haller M, Boons GJ, Towards a modular approach for heparin synthesis, J Chem Soc Perkin Trans 1, 814-22 (2001).

    Article  Google Scholar 

  23. Haller M, Boons GJ,Selectively protected disaccharide building blocks for modular synthesis of heparin fragments, Eur J Org Chem 2033-8 (2002).

  24. Orgueira HA, Bartolozzi A, Schell P, Litjens REJN, Palmacci ER, Seeberger PH, Modular synthesis of heparin oligosaccharides, Chem Eur J 9, 140-69 (2003).

    Article  CAS  Google Scholar 

  25. Ojeda R, de Paz JL, Martin-Lomas M, Synthesis of heparin-like oligosaccharides on a soluble polymer support, Chem Commun 2486-7 (2003).

  26. For a reviews see Tamura J, Recent advances in the synthetic studies of glycosaminoglycans, Trend Glycosci Glycotechnol 13, 65-88 (2001).

    Google Scholar 

  27. For a review see van Boeckel CAA, Petitou M, The unique antithrombin III binding domain of heparin: A lead to new synthetic antithrombotics, Angew Chem Int Ed 32, 1671-90 (1993).

    Article  Google Scholar 

  28. Dreef-Tromp CM, Willems HAM, Westerduin P, van Veelen P, van Boeckel CAA, Polymer-supported solution synthesis of heparan-sulphate like oligomers, Biorg Med Chem Lett 7, 1175-80 (1997).

    Article  CAS  Google Scholar 

  29. Schmidt RR, Kinzy, Anomeric-oxygen activation for glycoside synthesis: The trichloroacetimidate method, Adv Carbohydr Chem Biochem 50, 21-123 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. Excoffier G, Gagnaire D, Utille JP, Selective cleavage of anomeric acetyl groups of acetylated glycosyl residues by hydrazine, Carbohydr Res 39, 368-73 (1975).

    Article  CAS  Google Scholar 

  31. Douglas SP, Whitfield DM, Krepinsky JJ, Polymer-supported so-lution synthesis of oligosaccharides, J AmChem Soc 113, 5095-7 (1991).

    Article  CAS  Google Scholar 

  32. Jaquinet JC, Petitou M, Duchaussoy P, Lederman I, Choay J, Torri G, Sinaÿ P, Synthesis of heparan fragments-a chemical synthesis of the trisaccharide O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-glucopyranosyl)-(1 → 4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1 → 4)-2-deoxy-2-sulfamido-6-O-sulfo-D-glucopyranose heptasodium salt, Carbohydr Res 130, 221-41 (1984).

    Article  Google Scholar 

  33. Ojeda R, de Paz JL, Martin-Lomas H, Lassaletta JM, A new route to L-iduronate building-blocks for the synthesis of heparin-like oligosaccharides, Synlett 8, 1316-8 (1999).

    Google Scholar 

  34. Lubineau A, Gavard O, Alais J, Bonnaffe D, New accesses to L-iduronyl synthons, Tetrahedron Lett 41, 307-11 (2000).

    Article  CAS  Google Scholar 

  35. Baumhof P, Mazitschek R, Giannis A, Amild and effective method for the transesterification of carboxylic acid esters, Angew Chem Int Ed 40, 3672-4 (2001).

    Article  CAS  Google Scholar 

  36. Ando H, Manabe S, Nakahara Y, Ito Y, Solid-phase capture-release strategy applied to oligosaccharide synthesis on a soluble polymer support, Angew Chem Int Ed 40, 4725-8 (2001).

    Article  CAS  Google Scholar 

  37. A. Kirshing, H. Monenschain, R. Wittenberg, The "resin-capture-release" hybrid technique: a merger between solid-and solution-phase synthesis, Chem Eur J 6, 4445-50, (2000).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojeda, R., Terentí, O., de Paz, JL. et al. Synthesis of heparin-like oligosaccharides on polymer supports. Glycoconj J 21, 179–195 (2004). https://doi.org/10.1023/B:GLYC.0000045091.18392.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000045091.18392.a8

Navigation