Skip to main content
Log in

Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The present work has been performed to study the growth and metabolic activities of two maize cultivars (cv. 323 and cv. 324) which are shown to have different tolerances to salt stress and to determine the effects of inoculation with Azospirillum spp. Along with identifying the mechanisms of maize salt tolerance and the role of Azospirillum (growth promoting rhizobacteria) in elevating salinity stress conditions is examined Maize cv. 323 was the most sensitive to salinity, while cultivar 324 was the most resistant of the 12 maize cultivars tested. Cultivars differences were apparent with certain growth criteria as well as related metabolic activities. The lack of a negative response to increasing NaCl concentration for water content, dry matter yield and leaf area of cv. 324 up to a concentration of − 0.6 MPa indicated salt tolerance. While for cv. 323 there was a marked inhibitory effect of salinity on growth. In the tolerant cv. 324, soluble and total saccharides, soluble protein in shoots and total protein in roots increased with salinity stress. The sensitivity of cv. 323 however was associated with depletion in saccharides and proteins. Proline accumulation was higher and detected earlier at a lower salinity concentration in the salt sensitive cv. 323 comapred to the salt tolerant cv. 324. When salt stressed maize was inoculated with Azospirillum, proline concentration declined significantly. The present study showed, in general, that the concentration of most amino acid increased on exposure to NaCl as well as when inoculated with Azospirillum. The relatively high salt tolerance of cv. 324, compared with cv. 323 was associated with a significantly high K+/Na+ ratio. Azospirillum inoculation markedly altered the selectivity of Na+, K+ and Ca++ especially in the salt sensitive cultivar cv. 323. Azospirillum restricted Na+ uptake and enhanced the uptake of K+ and Ca++ in cv. 323. A sharp reduction in the activity of nitrate reductase and nitrogenase in shoots and roots of both cultivars was induced by salinity stress. This reduction in NR and NA activity was highly significant at all salinity concentrations. Azospirillum inoculation stimulated NR and nitrogenase activity in both shoots and roots of both cultivars. The differential effect of Azospirillum inoculation on maize cv. 323 and cv. 324 illustrates the different sensitivity of these two cultivars to stress, but still does not provide any clues as to the key events leading to this difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbdEl-Backi G.K., Siefritz F., Man H.M., Weiner H., Kaldenho R. and Kaiser W.M. 2000. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 23: 515–521.

    Article  Google Scholar 

  • Ashraf M. 1994. Breeding for salinity tolerance proteins in plants. Crit. Rev. Plant Sci. 13: 17–42.

    Google Scholar 

  • Bashan Y. and Holguin G. 1997. Azospirillum — Plant relationships: environmental and physiological advances (1990–1996). Can. J. Microbiol. 43: 103–121.

    Article  CAS  Google Scholar 

  • Bates L.S., Waldern R.P. and Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Bohnert H.J., Nelson D.E. and Jensen R.G. 1995. Adaptation to environmental stress. Plant Cell 7: 1099–1111.

    Article  PubMed  CAS  Google Scholar 

  • Borsani O., Cuartero J., Fermandez J.A., Valpuesta V. and Botella M.A. 2001. Identification of two loci in tomato leaves distinct mechanisms for salt tolerance. Plant Cell 13: 873–888.

    Article  PubMed  CAS  Google Scholar 

  • Bothe H., Korsgen H., Lehmacher T. and Hundeshagen B. 1992. Differential effects of Azospirillum, auxin and combined nitrogen on the growth of roots of wheat. Symbiosis 13: 167–179.

    CAS  Google Scholar 

  • Boyer J.A. 1982. Plant productivity and environment. Science 218: 443–448.

    PubMed  Google Scholar 

  • Cramer G.R. 1992. Kinetics of maize elongation. III. Response of Na-excluding is varying Na/Ca salinities. J. Exp. Bot. 43: 857–864.

    Google Scholar 

  • Cramer G.R., Lauchli A. and Polito V.S. 1985. Displacement of Ca2+ by N from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol. 79: 207–211.

    PubMed  CAS  Google Scholar 

  • Cramer M.D. and Lips S.H. 1995. Enriched rhizosphere CO2 concentrations can ameliorate the in. uence of salinity on hydroponically grown tomato plants. Physiol. Plant. 94: 425–432.

    Article  CAS  Google Scholar 

  • Crawford N. M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859–868.

    Article  PubMed  CAS  Google Scholar 

  • El-Komy M. 1992. Ecological and physiological studies on genus Azospirillum from the rhizosphere of maize and rice plants. Ph.D. Thesis, Institute of Agricultural Microbiology, Russian Acad. Sci., Sankt Petrosburg.

    Google Scholar 

  • El-Komy H.M., Hamdia M.A. and Abdel-Backi G.K. 2003. Nitrate reductase in wheat plants under water stress and inoculated with Azospirillum sp. Biol. Plantarum 46: 281–287.

    Article  CAS  Google Scholar 

  • Fales D.R. 1951. The assimilation and degradation of carbohydrates of yeast cells. J. Biol. Chem. 193: 113–118.

    PubMed  CAS  Google Scholar 

  • Ferrira M.C., Fernands M.S. and Dobereiner J. 1987. Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol. Fert. Soil 4: 47–53.

    Google Scholar 

  • Fuentes S., Allen D.J., Adriana O.L. and Hernandez G. 2001. Overexpresssion of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentration. J. Exp. Bot. 52: 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  • Garcia A., Rizzo C.A., Uddin J., Bartos S.L., Senadhira D., Flowers T.J. and Yeo A.R. 1997. Sodium and potassium transports to xylem are inherited independently in rice and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ. 20: 1167–1174.

    Article  CAS  Google Scholar 

  • Gilbert G.A., Gadush M.V., Wilson C. and Madore M.A. 1999. Amino acids accumulation in sink and source tissues of Coleus blumei Benth. during salinity stress. J. Exp. Bot. 49: 107–114.

    Article  Google Scholar 

  • Gorham J. 1990. Salt tolerance in the Triticeae. Ion discrimination in Aegeilops species. J. Exp. Bot. 14: 615–621.

    Google Scholar 

  • Hamdia M.A. and El-Komy H.M. 1998. Effect of salinity, gibberllic acid and Azospirillium inoculation on growth and nitrogen uptake of Zea mays. Biol. Plantarum 40: 109–120.

    Article  Google Scholar 

  • Hamdia M.A., El-Komy H.M. and Barakat N. 2000. The role of foliar and potassium fertilization and/or Azospirillum lipoferum or Bacillus polymexa inoculation in nitrogen xation and mineral nutrition of maize grown under salt stress. In: Xth International Colloquium for the Optimization of Plant Nutrition P. 193. Cairo.

  • Hamdia M.A. 2002. Salt tolerance and interaction with abscisic acid of tomato cultivars. Bull. Fac. Sci., Assiut Univ. 31: 205–217.

    Google Scholar 

  • Hamdia M.A., El-Komy H.M., Gaber G.K. and Hetta M.A. 2002. Nitrate reductase in plants is affected by foliar hormonal application or Azospirillum inoculation. Proc. 2nd Int. Conf. Biol. Sci. Fac. Sci. Tanta Univ. April 27–28 2: 449–457.

    Google Scholar 

  • Hasegawa P.M., Bressan R.A. and Zhu J.K. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol 51: 463–499.

    Article  PubMed  CAS  Google Scholar 

  • Hsu M.Y., Tseng M.J. and Lin C.H. 1999. The fluctuation of carbohydrates and nitrogen copounds in flooded wax-apple trees. Bot. Bull. Acad. Sinica 40: 193–198.

    CAS  Google Scholar 

  • Jaworski E.G. 1971. Nitrate reductase in intact plant tissues. Biochem. Biophys. Res. Commun. 43: 1274–1279.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O.H., Roserbrough N.J., Fail A.L. and Randall R.J. 1951. Protein measurements with folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Manetas Y. 1990. Are-examination of NaCl effects on phosphenol pyruvate carboxylase at high physiological, enzyme concentration. Physiol. Plantarum 78: 225–229.

    Article  CAS  Google Scholar 

  • Marcelis L.F.M. and Hooijdonk J.V. 1999. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 215: 57–64.

    Article  CAS  Google Scholar 

  • Martinez V. and Cerda A. 1989. Nitrate reductase activity in tomato and cucumber leaves as influenced by NaCl and nitrogen source. J. Plant Nutr. 12: 1335–1350.

    CAS  Google Scholar 

  • Metzner H., Rau H. and Senger H. 1965. Untersuchungen zur Synchronisierbarkeit einzelner Pigment-Mungel Mutanten von Chlorella. Planta 65: 186–194.

    Article  CAS  Google Scholar 

  • Niu Bressan R.A., Hasegawa P.M. and Pardo J.M. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol. 109: 735–742.

    Google Scholar 

  • Peuke A., Glaab J., Kaiser W.M. and Geschk W.D. 1990. The uptake and flow of C,N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. J. Exp. Bot. 47: 377–385.

    Google Scholar 

  • Rai S.P., Luthra R. and Kumar S. 2003. Salt-tolerant mutants in glycophytic salinity response (GRS) genes in Catharanthus roseus. Theor. Appl. Genet. 106: 221–230.

    PubMed  CAS  Google Scholar 

  • Ribaudo C.M., Paccusse A.N., Paccusse A.N., Cura J.A. and Fraschina A.A. 1998. Azospirillum maize association: effects on dry matter yield and nitrate reductase activity. Agric. Trop. Subtrop. 31: 61–70.

    Google Scholar 

  • Rodriguez-Navarro A. 2000. Potassium transport in fungi and plants. Biochem. Biophys. Acta 1469: 1–30.

    PubMed  CAS  Google Scholar 

  • Sairam R.K. and Tyagi A. 2004. Physiological and molecular biology of salinity stress tolerance in plants. Current Sci. 86: 407–421.

    CAS  Google Scholar 

  • Sarwar K.S., Raham M. and Khan S. 1998. Effect of Azospirillum lopoferum on growth, yield and nutrient content of rice. Bull. Inst. Trop. Agr. Sarak 21: 9–17.

    Google Scholar 

  • Schwarzenbach G. and Biedermann W. 1948. Komplexone X. Edrakali-Komplexe von 0,6-dioxyazofarbstoffen. Helv. Chem. Acta 31: 678–687.

    Article  CAS  Google Scholar 

  • Serrano R., Mulet J.M., Rios G., Marquez J.A., de Larrinoa I.F., Leube M.P., Mendizabal I., Pascual-Ahuir A., Proft M., Ros R. and Montesinos C. 1999. A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50: 1023–1036.

    Article  CAS  Google Scholar 

  • Shaddad M.A.K. 1990. The effect of proline application on the physiology of Raphanus sativus plants grown under different salinity stress. Biol. Plantarum 32: 104–112.

    CAS  Google Scholar 

  • Silveira J.A., Viegas Rde A., da Rocha I.M., Moreira A.C., Moreira Rde A. and Oliveira J.T. 2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J. Plant Physiol. 160: 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Solomonson L.P. and Barber M.J. 1990. Assimilatory nitrate reductase: Functional properties and regulation. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 41: 187–223.

    Article  Google Scholar 

  • Speckman D.H., Stein W.H. and Moores S. 1958. Automatic recording apparatus for use in chromatography for amino acid. Analyt. Chem. 30: 1090–1205.

    Google Scholar 

  • Steel R.G. and Torrie J.H. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co, New York.

    Google Scholar 

  • Turner G. and Gibson A.H. 1980. Measurement of nitrogen xation by indirect means. In: Bergersen F. J. (ed.), Methods for Evaluating Biological Nitrogen Fixation. John Wiley & Sons, New York,pp. 111–138.

    Google Scholar 

  • Wang H.L., Lee P.D., Liu F.L. and Su J. 1999. Effect of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pool in sweet potato cell suspension cultures. Bot. Bull. Acad Sinica 40: 219–225.

    CAS  Google Scholar 

  • Williams V. and Twine S. 1960. Falme photometric method for sodium, potassium and calcium. In: Peach K. and Tracey M.V. (eds), Modern Methods of Plant Analysis. Vol. V. Springer-Verlag, Berlin,pp. 3–5.

    Google Scholar 

  • Yordanov I., Velikova V. and Tsonev T. 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol., Special Issue, 187–206.

  • Zhu J.K., Hasegawa P.M. and Bressan R.A. 1997. Molecular aspects of osmotic stress. Crit. Rev. Plant Sci. 16: 253–277.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abd El-Samad Hamdia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdia, M.A.ES., Shaddad, M. & Doaa, M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation 44, 165–174 (2004). https://doi.org/10.1023/B:GROW.0000049414.03099.9b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GROW.0000049414.03099.9b

Navigation