Skip to main content
Log in

Laboratory studies on adhesion of microalgae to hard substrates

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Adhesion of Chlorella vulgaris(chlorophyceae), Nitzschia amphibia(bacillariophceae) and Chroococcus minutus(cyanobacteria) to hydrophobic (perspex, titanium and stainless steel 316-L), hydrophilic (glass) and toxic (copper, aluminium brass and admiralty brass) substrata were studied in the laboratory. The influence of surface wettability, surface roughness, pH of the medium, culture age, culture density, cell viability and presence of organic and bacterial films on the adhesion of Nitzschia amphibia was also studied using titanium, stainless steel and glass surfaces. All three organisms attached more on titanium and stainless steel and less on copper and its alloys. The attachment varied significantly with respect to exposure time and different materials. The attachment was higher on rough surfaces when compared to smooth surfaces. Attachment was higher on pH 7 and above. The presence of organic film increased the attachment significantly when compared to control. The number of attached cells was found to be directly proportional to the culture density. Attachment by log phase cells was significantly higher when compared to stationary phase cells. Live cells attached more when compared to heat killed and formalin killed cells. Bacterial films of Pseudomonas putida increased the algal attachment significantly. %

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, K., 1996. Exopolysaccharide production and attachment strength of bacteria and diatoms on substrates with different surface tensions. Microb. Ecol. 32: 23–33.

    Google Scholar 

  • Becker, K. & M. Wahl, 1991. Influence of substratum surface tension on biofouling of artificial substrata in Kiel Bay (Western Baltic): in situ studies. Biofouling 4: 275–291.

    Google Scholar 

  • Bott, T. R., 1990. Fouling Notebook. Institution of Chemical Engineers, England.

    Google Scholar 

  • Burchard, R. P., D. Rittschof & J. Bonaventura, 1990. Adhesion and motility of gliding bacteria on substrata with different surface free energy. Appl. envir. Microbiol. 56: 2529–2534.

    Google Scholar 

  • Callow, M. E., 1993. A review of fouling in freshwaters. Biofouling 7: 313–327.

    Google Scholar 

  • Characklis, W. G. & K. E. Cooksey, 1983. Biofilms and microbial fouling. Adv. Appl. Microbiol. 29: 93–138.

    Google Scholar 

  • Characklis, W. G., C. A. McFeters & K. C. Marshall, 1990. Physiological ecology in biofilm systems. In Characklis W. G. & K. C. Marshall (eds), Biofilms. John Wiley & Sons, Inc., New York: 341–394.

    Google Scholar 

  • Droop, M.R., 1967. A procedure for routine purification of algal cultures with antibiotics. Br. Phycol. Bull. 3: 295–297.

    Google Scholar 

  • Fattom, A. & M. Shilo, 1984. Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. envir. Microbiol. 47: 135–143.

    Google Scholar 

  • Ford, T. E., M. Walch, R. Mitchell, M. J. Kaufman, J. R. Vestal, S. A. Ditner & M. A. Lock, 1989. Microbial film formation on metals in an enriched arctic river. Biofouling 1: 301–311.

    Google Scholar 

  • Fukami, K., T. Sakami, Y. Ishida & N. Tanaka, 1989. Effect of bacterial film on the growth of the attached diatom, Nitzschia sp. In Miyachi, S., I. Karube & Y. Isida (eds), Current Topics in Marine Biotechnology. The Japanese Society for Marine Biotechnology, Tokyo: 415–418.

    Google Scholar 

  • Gerloff, G. C., G. P. Fitzerald & F. Skoog, 1950. The isolation, purification and culture of blue-green algae. Am. J. Bot. 37: 216–218.

    Google Scholar 

  • Hoagland, K. D., J. R. Rosowski, M. R., Gretz & S. C. Roemer, 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry and physiology. J. Phycol. 29: 537–566.

    Google Scholar 

  • Holmes, P. E., 1986. Bacterial enhancement of vinyl fouling by algae. Appl. envir. Microbiol. 52: 1391–1393.

    Google Scholar 

  • Hunt, A. & J. D. Parry, 1998. The effect of substratum roughness and river flow rate on the development of freshwater biofilm community. Biofouling 12: 287–303.

    Google Scholar 

  • Kawamura, T., Y. Nimura & R. Hirano, 1988. Effects of bacterial films on diatom attachment in the initial phase of marine fouling. J. Oceanogr. Soc. Jap. 44: 1–5.

    Google Scholar 

  • Keithan, E. & L. Barnese, 1989. Effects of pH and nutrients on periphyton colonization. J. Phycol. 25 suppl: 8.

    Google Scholar 

  • Kirchman, D., S. Graham, D. Reish & R. Mitchell, 1982. Bacterial induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spiroribidae). J. exp. mar. Biol. Ecol., 56: 153–163.

    Google Scholar 

  • Liehr, S. K., J. W. Eheart & M. T. Suidan, 1988. A modelling study of the effect of pH on carbon limited algal biofilms. Wat. Res. 22: 1033–1041.

    Google Scholar 

  • Ludyansky, M. L., 1991. Algal fouling in the cooling system. Biofouling 3: 13–21.

    Google Scholar 

  • Peterson, C. G. & R. J. Stevenson, 1989. Substratum conditioning and diatom colonization in different current regimes. J. Phycol. 25: 790–793.

    Google Scholar 

  • Rao, T. S., M. S. Eswaran, V. P. Venugopalan, K. V. K. Nair & P. K. Mathur, 1993. Fouling and corrosion in an open recirculating cooling system. Biofouling 6: 245–259.

    Google Scholar 

  • Scott, C., R. L. Fletcher & G. B. Bremer, 1996. Observations on the mechanisms of attachment of some marine fouling blue-green algae. Biofouling 10: 161–173.

    Google Scholar 

  • Sharma, M. O., N. B. Bhosle & A. B. Wagh, 1990. Method of removal and estimation of microfouling biomass. Indian J. mar. Sci. 19: 174–176.

    Google Scholar 

  • Sokal, R. R. & J. Rohlf, 1987. Introduction to Biostatistics. 2nd edn. W.H. Freeman & Company, New York.

    Google Scholar 

  • Steinman, A. D. & A. F. Parker, 1990. Influence of substrate conditioning on periphytic growth in a heterotrophic woodland stream. J. N. Am. Benthol. Soc. 9: 170–179.

    Google Scholar 

  • Tosteson, T. R. & W. A. Corpe, 1975. Enhancement of adhesion of the marine Chlorella vulgaris to glass. Can. J. Microbiol. 21: 1025–1031.

    Google Scholar 

  • Woods, D. C. & R. L. Fletcher, 1991. Studies on the strength of adhesion of some common marine fouling diatoms. Biofouling 3: 287–303.

    Google Scholar 

  • Wrangstadeth, M., P. L. Conway & S. Kjellberg, 1996. The release and production of extracellular polysaccharides during starvation of marine Pseudomonas sp. and the effect thereof on the adhesion. Arch. Microbiol. 145: 220–227.

    Google Scholar 

  • Zaidi, B. R. & T. R. Tosteson, 1972. The differential adhesion of Chlorella cells during the life cycle. Proc. Int. Seaweed Symp. 7: 323–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekar, R., Venugopalan, V., Satpathy, K. et al. Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512, 109–116 (2004). https://doi.org/10.1023/B:HYDR.0000020315.40349.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000020315.40349.38

Navigation