Skip to main content
Log in

Free Surface and Interface Thermodynamics of Liquid Nickel in Contact with Alumina

  • Published:
Interface Science

Abstract

Sessile drop experiments of Ni and Ni(2at.%Al) were conducted under controlled working conditions, at 1500°C, P(O2) ≤ 10−9 Torr. It is shown that Al and oxygen atoms engaged in the capillary driven mass transport at the interface have a significant impact on the surface/interface thermodynamics. The surface energy of liquid Ni determined from experiments in which Ni comes into contact with Al2O3 is significantly lower than that of high purity Ni, due to the segregation of Al. The free energy of segregation of Al to the free surface of Ni (Δ G S) was found to range from −164 to −152 kJ/mol, indicating a relatively strong tendency for segregation of Al to the free surface of Ni(Al). It is proposed that an Al(O)-rich liquid layer forms adjacent to the Ni-Al2O3 interface, which improves interfacial adhesion. In the Ni(Al)-Al2O3 system, an increase in the Al content of the alloy leads to the improvement of both wetting and adhesion of the alloy on the ceramic, correlating with the improvement in the interface strength after solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Rühle and A.G. Evans, Materials Science and Engineering A107, 187 (1989).

    Google Scholar 

  2. R. Brydson, H. Müllejans, J. Bruley, P.A. Trusty, X. Sun, J.A. Yeomans, and M. Rühle, Journal of Microscopy 177, 369 (1995).

    Google Scholar 

  3. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos, Acta Metallurgica et Materialia 36, 1797 (1988).

    Google Scholar 

  4. E. Saiz, A.P. Tomsia, and R. Cannon, Acta Materialia 46, 2349 (1998).

    Google Scholar 

  5. E. Saiz, R.M. Cannon, and A.P. Tomsia, Acta Materialia 47, 4209 (1999).

    Google Scholar 

  6. G. Levi and W.D. Kaplan, Acta Materialia 50, 75 (2001).

    Google Scholar 

  7. G. Levi, C. Scheu, and W.D. Kaplan, Interface Science 9, 213 (2001).

    Google Scholar 

  8. J.R. Rice, Z. Suo, and J.-S.Wang, in Metal-Ceramic Interfaces, Acta-Scripta Metallurgica Proceedings Series, vol. 4, edited by M. Rühle, A.G. Evans, M.F. Ashby, and J.P. Hirth (Pergamon Press, Oxford, 1990), p. 269.

    Google Scholar 

  9. V. Merlin and N. Eustathopoulos, Journal of Materials Science 30, 3619 (1995).

    Google Scholar 

  10. J.A. Champion, B.J. Keene, and S. Allen, Journal of Materials Science 8, 423 (1973).

    Google Scholar 

  11. P.D. Ownby, K.W.K. Li, and D.A. Weirauch Jr., Journal of the American Ceramic Society 74, 1275 (1991).

    Google Scholar 

  12. N.E. Dorsey, Journal of the Washington Academy of Sciences 18, 505 (1928).

    Google Scholar 

  13. B.J. Keene, International Materials Reviews 38, 157, (1993).

    Google Scholar 

  14. K. Nogi, K. Ogino, A. McLean, and W.A. Miller, Metallurgical Transactions B 17B, 163 (1986).

    Google Scholar 

  15. B.J. Keene, K.C. Mills, and R.F. Brooks, Materials Science and Technology 1, 568 (1985).

    Google Scholar 

  16. S. Sauerland, K. Eckler, and I Egry, Journal of Materials Science Letters 11, 330 (1992).

    Google Scholar 

  17. J. Schade, A. McLean, and W.A. Miller, in Proceedings of the 115th Annual Meeting of TMS-AIME, edited by E.W. Collins and C.C. Koch (New Orleans, 1986), p. 233.

  18. E.D. Hondros, M.P. Seah, S. Hofmann, and P. Lejcek, in Physical Metallurgy, edited by R.W. Cahn and P. Haasen, vol. II (Elsevier Science, 1996), p. 1202.

  19. T. Schulthess, R. Monnier, and S. Crampin, Physical Review B 50, 18564 (1994).

    Google Scholar 

  20. M. Polak, J. Deng, and L. Rubinovich, Physical Review Letters 78, 1058 (1997).

    Google Scholar 

  21. J. Cabané and F. Cabané, in Interface Segregation and Related Processes in Materials, edited by J. Nowotny (Trans Tech Publications Ltd., 1991), p. 1.

  22. G.D. Ayushina, E.S. Levin, and P.V. Gel'd, Russian Journal of Physical Chemistry 43, 1548 (1969).

    Google Scholar 

  23. J.V. Naidich, Progress in Surface and Membrane Science 14, 353 (1981).

    Google Scholar 

  24. J.W. Park and C.J. Altstetter, Metallurgical Transactions A 18A, 43 (1987).

    Google Scholar 

  25. K.P. Trumble and M. Rühle, Acta Metallurgica et Materialia 39, 1915 (1991).

    Google Scholar 

  26. G. Levi and W.D. Kaplan, Acta Materialia 47, 3927 (1999).

    Google Scholar 

  27. P.D. Ownby and J. Liu, Journal of Adhesion Science and Technology 2, 255 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne D. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, G., Clarke, D.R. & Kaplan, W.D. Free Surface and Interface Thermodynamics of Liquid Nickel in Contact with Alumina. Interface Science 12, 73–83 (2004). https://doi.org/10.1023/B:INTS.0000012295.38485.90

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000012295.38485.90

Navigation