Skip to main content
Log in

The Influence of Ni Content on the Stability of Copper—Nickel Alloys in Alkaline Sulphate Solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of copper–nickel alloys with different Ni content (5–65%) in sulphate solutions of pH 12 was investigated. The effects of temperature, immersion time, and concentration of sulphate ions were also studied. Different electrochemical methods such as open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS) were used. Potentiodynamic measurements reveal that the increase in nickel content increases the corrosion rate of the alloy in sulphate solution linearly. Nevertheless, an increase in the nickel content along with increase in immersion time improves the stability of the Cu–Ni alloys due to the formation of a stable passive film. An equivalent circuit model for the electrode/electrolyte interface under different conditions was proposed. The experimental impedance data were fitted to theoretical data according to the proposed model. The relevance of the model to the corrosion/passivation phenomena occurring at the electrode/solution interface was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Shreir, R.A. Jarman and G.T. Burstein (Eds), 'Corrosion: Metal/Environment Reaction', 3rd edn (Butterworth-Heinemann Ltd, Linacre House, Jorden Hill, Oxford OX2 8DP, reprinted 1995), p. 4:41, 17:70 and 17:84.

    Google Scholar 

  2. P.K. Chauhan and H.S. Gadiyar, Corros. Sci. 25 (1985) 55.

    Google Scholar 

  3. A.M. Beccaria and J. Crousier, Br. Corr. J 24 (1989) 49.

    Google Scholar 

  4. H.P. Hack and H.W. Pickering, J. Electrochim. Soc. 138 (1991) 690.

    Google Scholar 

  5. M. Metikos-Hukovic and I. Milosev, J. Appl. Electrochem. 22 (1992) 448.

    Google Scholar 

  6. I. Milosev and M. Metikos-Hukovic, Electrochim. Acta 42 (1997) 1537.

    Google Scholar 

  7. A.N. Kamkin, A.D. Davydov, G.-D. Zhou and V.A. Marichev, Russ. J. Electrochem. 35 (1999) 531.

    Google Scholar 

  8. P. Druska, H.-H. Strehblow and S. Golledge, Corros. Sci. 38 (1996) 835.

    Google Scholar 

  9. N.S. Mclntyre, T.E. Rummery, M.G. Cook and D. Owen, J. Electrochim. Soc. 123 (1976) 1164.

    Google Scholar 

  10. D.D. Macdonald, B.C. Syrett and S.S. Wing, Corrosion 34 (1978) 289.

    Google Scholar 

  11. J.A. Ali and J.R. Ambrose, Corros. Sci. 32 (1991) 799.

    Google Scholar 

  12. K.M. Ismail and W.A. Badawy, J. Appl. Electrochem. 30 (2000) 1303.

    Google Scholar 

  13. K.M. Ismail, A.A. El-Moneim and W.A. Badawy, J. Electrochem. Soc. 148 (2001) C81.

    Google Scholar 

  14. U. Ebersbach, K. Schwabe and K. Ritter, Electrochim. Acta 12 (1967) 927.

    Google Scholar 

  15. N. Sato and G. Okamoto, in J.O'M. Bockris, B.E. Conway, E. Yeager and R.E. White (Eds), 'Comprehensive Treatise of Electrochemistry', Vol. 4, (Plenum Press, New York, 1981), p. 201.

    Google Scholar 

  16. R.E. Hummel, R.J. Smith and E.D. Verink Jr. Corros. Sci. 27 (1987) 803.

    Google Scholar 

  17. G. Dagan and M. Tomkiewicz, J. Electrochem. Soc. 139 (1992) 461.

    Google Scholar 

  18. A.E. Bohe, J.R. Vilche, K. Juettner, W.J. Lorenz and W. Paatsch, Electrochim. Acta 34 (1989) 1443.

    Google Scholar 

  19. L.M. Rice-Jackson, G. Horanyi and A. Wiekowski, Electrochim. Acta 36 (1991) 753.

    Google Scholar 

  20. K.M. Ismail, S.S. El-Egamy and M. Abdelfatah, J. Appl. Electrochem. 31 (2001) 663.

    Google Scholar 

  21. V.P. Parkhutik, J.M. Albella and J.M. Martinez-Duart, in B.E. Conway, J.O'M. Bockris and R.E. White (Eds), 'Modern Aspects of Electrochemistry', Vol. 23, (Plenum Press, New York, 1992), p. 330.

    Google Scholar 

  22. A. Jardy, A. Legal Lasalle-Molin, M. Keddam and H. Takenouti, Electrochim. Acta 37 (1992) 2195.

    Google Scholar 

  23. H.-H. Strehblow and B. Titze, Electrochim. Acta 25 (1980) 839.

    Google Scholar 

  24. J. Morals, G.T. Fernandez, P. Esparza, S. Gonzalez, R.C. Salvarezza and A.J. Arvia, Corros. Sci. 37 (1995) 211.

    Google Scholar 

  25. P.W. Atkins, 'Physical Chemistry', 5th edn, (Oxford University Press, Oxford, 1994), p. 877

    Google Scholar 

  26. A. Wieckowski and E. Ghali, Electrochim. Acta 30 (1985) 1423.

    Google Scholar 

  27. K. Hladky, L.M. Calow and J.L. Dawson, Br. Corr. J 15 (1980) 20.

    Google Scholar 

  28. J. Hitzig, J. Titz, K. Juettner, W.J. Lorenz and E. Schmidt, Electrochim. Acta 29 (1984) 287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, K.M., Fathi, A.M. & Badawy, W.A. The Influence of Ni Content on the Stability of Copper—Nickel Alloys in Alkaline Sulphate Solutions. Journal of Applied Electrochemistry 34, 823–831 (2004). https://doi.org/10.1023/B:JACH.0000035612.66363.a3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000035612.66363.a3

Navigation