Skip to main content
Log in

Comparison of Spectral Matching Algorithms for Identifying Natural Salt Crusts

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

This paper presents a comparison between the capabilities of different spectral matching algorithms to indentify the spectra of samples from salt crusts obtained by a hand-operated spectroradiometer. The following algorithms have been used: absolute difference; squared difference; derivative difference; Euclidean vector distance; and correlation coefficient. As the investigations have shown, the results depend on the method used. For example, the correlation coefficient algorithm yielded the best results, next come the squared derivative, the Euclidean vector difference, and the absolute difference algorithms. It has been found that automated search of spectra of salt crusts does not permit exact identification of the unknown spectra of salts by means of the existing spectra libraries. Besides the quality of the algorithms and libraries used, the discrepancy between the results of matching is also due to the inherent factors related to the nature of the salt crusts, such as variations in the layering, moisture content, grain size, etc. However, in the case of large databases of the spectra of salts or minerals, the above algorithms can be useful for reducing the search to a small number of spectra of interest which should subsequently be interpreted in a conventional manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. N. Clark, G. A. Swayze, A. Gallagher, T. V. V. King, and W. M. Calvin, The U.S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 m, U.S. Geological Survey, Open File Report 93–592 (1993).

  2. S. L. Grotch, Anal. Chem., 43, 1362-1370 (1971).

    Google Scholar 

  3. Spec-View, Jet Propulsion Laboratory (JPL) and United States Geological Survey, Pasadena, California, 91109, USA (1992).

  4. R. N. Clark and G. A. Swayze, in: R. O. Green (ed.), Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, January 23-26, JPL Publication, 95-1 (1995), pp. 39-40.

  5. R. N. Clark and T. L. Roush, J. Geophys. Res., 89, 6329-6340 (1984).

    Google Scholar 

  6. R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, and F. Kruze, in: Proc. Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication, 91-28 (1991), pp. 2-3.

    Google Scholar 

  7. N. A. Drake, Int. J. Remote Sensing, 16, No. 14, 2555-2571 (1995).

    Google Scholar 

  8. E. G. Ehlers, Optical Mineralogy, Vol. 1, Theory and Techniques, Vol. 2. Mineral Description, Blackwell Scientific Publication, Palo Alto, California (1987).

    Google Scholar 

  9. G. T. Rasmussen and T. L. Isenhour, Appl. Spectrosc., 33, 371-376 (1979).

    Google Scholar 

  10. T. V. V. King, R. N. Clark, and G. A. Swayze, in: F. Kuehn, T. King, B. Hoerig, and D. Pieter (eds.), Remote Sensing for Site Characterization, Springer, Berlin (2000), pp. 164-185.

    Google Scholar 

  11. C. Lee and D. A. Landgrebe, IEEE Trans. on G & RS, 31, No. 4, 792-800 (1993).

    Google Scholar 

  12. F. M. Howari, P. C. Goodell, and S. Miyamoto, J. Environ. Qual., 31, 1453-1461 (2002).

    Google Scholar 

  13. G. R. Hunt, J. W. Salisbury, and C. J. Lenhoff, Mod. Geol., 3, 1-4 (1971).

    Google Scholar 

  14. F. M. Howari, P. C. Goodell, S. Miyamoto, and B. Penn, in: Proc. Second EARSel Workshop on Imaging Spectroscopy, ITC, the Netherlands, July 11-12, Proc. on Compact Diskette, ITC, Enshide, the Netherlands (2000), pp. 1-11.

    Google Scholar 

  15. F. M. Howari, Int. J. Mineralogy, Crystallography and Geochem., 71, No. 2, (2002).

  16. G. R. Hunt, in: R. S. Carmichael (ed.), in: Handbook of Physical Properties of Rocks, Vol. 1, CRC Press, Boca Raton (1982), pp. 295-385.

    Google Scholar 

  17. M. J. Lewis, J. For. Sci., 32, 1281-1292 (1987).

    Google Scholar 

  18. Pi-Fuei Hsien, Classification of High Dimensional Data, Ph. D. Dissertation, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana (1998).

  19. F. Gan, J. Yan, and Y. Liang, Anal. Sci., 17, 635-937 (2000).

    Google Scholar 

  20. L. R. Crawford and J. D. Morrision, Anal. Chem., 40, 1464-1469 (1968).

    Google Scholar 

  21. S. L. Grotch, Anal. Chem., 45, 2-6 (1973).

    Google Scholar 

  22. F. M. Howari, P. C. Goodell, S. Miyamoto, and B. Penn, in: Remote Sensing 2000, From Laboratory Spectroscopy to Remotely Sensed Spectral Observation, Soil Science Society of America, Corpus Christi, Texas, Blackland Research and Extension Center (2000), pp. 2-27.

  23. W. D. Nesse, Introduction to Optical Mineralogy, 2nd ed., Oxford University Press, New York (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howari, F.M. Comparison of Spectral Matching Algorithms for Identifying Natural Salt Crusts. Journal of Applied Spectroscopy 70, 782–787 (2003). https://doi.org/10.1023/B:JAPS.0000008878.45600.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JAPS.0000008878.45600.9c

Navigation