Skip to main content
Log in

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper investigates the effects of tube length and diameter on the distributions of tensile stress and interfacial shear stress of a single-walled carbon nanotube in epoxy matrix. It was shown that a smaller tube diameter has a more effective reinforcement and there exists an optimal tube length at which reinforcement is maximized. It was also found that a carbon nanotube has a greater stress transfer efficiency than a solid fibre, providing flexibility for toughness and tensile strength optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Treacy, T. W. Ebbesen and J. M. Gibson, Nature 381 (1996) 678.

    Google Scholar 

  2. E. W. Wong, P. E. Sheehan and C. M. Lieber, Science 277 (1997) 1971.

    Google Scholar 

  3. P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein and K. C. Hwang, International Journal of Solids and Structures 39 (2002) 3893.

    Google Scholar 

  4. L. H. Peebles, in “Carbon Fibres: Formation, Structure and Properties” (CRC Press, Boca Raton, 1995).

    Google Scholar 

  5. H. D. Wagner, Chem. Phys. Lett. 361 (2002) 57.

    Google Scholar 

  6. H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, Appl. Phys. Lett. 72 (1998) 188.

    Google Scholar 

  7. H. D. Wagner and O. Lourie, ibid. 73 (1998) 3527.

    Google Scholar 

  8. O. Lourie and H. D. Wagner, Compos. Sci. Technol. 59 (1999) 975.

    Google Scholar 

  9. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13 (1965) 329.

    Google Scholar 

  10. K. Liao and S. Li, Appl. Phys. Lett. 79 (2001) 4225.

    Google Scholar 

  11. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, ibid. 76 (2000) 2868.

    Google Scholar 

  12. D. Qian and E. C. Dickey, J. Microscopy 204 (2001) 39.

    Google Scholar 

  13. A. H. Barber, S. R. Cohen and H. D. Wagner, Appl. Phys. Lett. 82 (2003) 4140.

    Google Scholar 

  14. C. A. Cooper, S. R. Cohen, A. H. Barber and H. D. Wagner, ibid. 81 (2002) 3873.

    Google Scholar 

  15. P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, Science 265 (1994) 1212.

    Google Scholar 

  16. L. S. Schadler, S. C. Giannaris and P. M. Ajayan, Appl. Phys. Lett. 73 (1999) 3842.

    Google Scholar 

  17. K. T. Lau, Chemical Phys. Lett. 370 (2003) 399.

    Google Scholar 

  18. S. J. V. Frankland, A. Caglar, D. W. Brenner and M. Griebel, J. Phys. Chem. B106 (2002) 3046.

    Google Scholar 

  19. H. L. Cox, Brit. J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  20. A. Kelly and N. H. Macmillan, in “Strong Solids,” 3rd edn. (Clarendon Press, Oxford, 1986).

    Google Scholar 

  21. J. P. S. Delmotte and A. Rubio, Carbon 40 (2002) 1729.

    Google Scholar 

  22. T. Vodenitcharova and L. C. Zhang, Phys. Rev. B68 (2003) 165401.

    Google Scholar 

  23. G. H. Aylward and T. J. V. Findlay, “SI Chemical Data” (John Wiley and Sons, 1974).

  24. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Science 287 (2000) 637.

    Google Scholar 

  25. M. F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Phys. Rev. Lett. 84 (2000) 5552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, K.Q., Zhang, L.C. The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. Journal of Materials Science 39, 4481–4486 (2004). https://doi.org/10.1023/B:JMSC.0000034141.48785.d2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000034141.48785.d2

Keywords

Navigation