Skip to main content
Log in

Gradient surface porosity in titanium dental implants: relation between processing parameters and microstructure

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To be successful, an implant should be biocompatible, strong and contain surface pores to promote osseointegration. A one-step microwave sintering procedure of titanium powders was attempted in this work. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. This non-conventional heating of titanium powder produced a dense core with surface porosity. The dense core provides the strength while the surface pores promote bone growth. The experiments were carried out in a semi-industrial grade microwave cavity using a α-SiC susceptor. Power levels of 1–1.5 kW, and soaking periods of approximately 30 min were used. Microstructural characterization was carried out by a scanning electron microscope. The sintered titanium had gradient porosity on the surface with a thickness of about 100–200 μm depending on the microwave power. The pores were interconnected with size ranging from 30 to 100 μm. This kind of microstructure is favorable for cell growth. Tensile strength values as high as 400 MPa were obtained for these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. Branemark, R. Adell, T. Albrektsson, U. Lekholm and S. Lundquist, Biomaterials 4 (1983) 25.

    Google Scholar 

  2. J. C. Keller, C. M. Stanford, J. P. Wightman, R. A. Draughn and R. Zaharias, J. Biomed. Mater. Res. 28 (1994) 939.

    Google Scholar 

  3. J. E. Davies, B. Lowenberg and A. Shiga, ibid. 24 (1990) 1289.

    Google Scholar 

  4. K. Asaoka and N. Kuwayama, ibid. 19 (1985) 699.

    Google Scholar 

  5. T. Kurachi, H. Nagao, H. Nagura and S. Enomoto, Arch. Oral Biol. 42 (1997) 465.

    Google Scholar 

  6. T. Nomura, S. Shingaki and T. Nakajima, J. Long-term Effects Med. Implants 8 (1998) 175.

    Google Scholar 

  7. T. Kokubo, Acta Mater. 46 (1998) 2519.

    Google Scholar 

  8. H. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi and T. Nakamura, J. Biomed. Mater. Res. (USA) 52 (2000) 553.

    Google Scholar 

  9. Yoshiki Oshida, U.S. Patent No. 6183255, “Titanium Material for Implants” (2001).

  10. H. Zreiqat and C. R. Howlett, J. Biomed. Mater. Res. 47 (1999) 360.

    Google Scholar 

  11. J. Lausmaa, M. Ask, U. Rolander and B. Kasemo, Mater. Res. Soc. Symp. Proc. 110 (1989) 647.

    Google Scholar 

  12. R. A. Ayers, S. J. Simske, T. A. Bateman, A. Petkus, R. L. C. Sachdeva and V. E. Gyunter, J. Biomed. Mater. Res. 45 (1999) 42.

    Google Scholar 

  13. D. Wolfarth and P. Ducheyne, ibid. 28 (1994) 417.

    Google Scholar 

  14. M. I. Lifland, D. K. Kim and K. Okazaki, Clin. Mater. 14 (1993) 13.

    Google Scholar 

  15. J. Qui, J. T. Dominici, M. I. Lifland and K. Okazaki, Biomaterials (UK), 18 (1997) 153.

    Google Scholar 

  16. M. I. Lifland and K. Okazaki, Clin. Mater. 17 (1994) 203.

    Google Scholar 

  17. K. Okazaki, D. K. Kim and R. A. Kopczyk, Conference Science and Engineering of Light Metals. RASELM '91 (Tokyo, Japan, 1991) 103.

  18. Y. Z. Yang, J. M. Tian, J. T. Tian, Z. Q. Chen, X. J. Deng and D. H. Zhang, J. Biomed. Mater. Res. 52 (2000) 333-337.

    Google Scholar 

  19. D. De Santis, C. Guerriero, P. F. Nocini, A. Ungersbock, G. Richards, P. Gotte and U. Armato, J. Mater. Sci. Mater. Med. 7 (1996) 21.

    Google Scholar 

  20. D. H. Kohn and P. Ducheyne, J. Biomed. Mater. Res. 24 (1990) 1483.

    Google Scholar 

  21. C. K. Chang, J. S. Wu, D. L. Mao and C. X. Ding, ibid. 56 (2001) 17.

    Google Scholar 

  22. M. Thieme, K. P. Wieters, F. Bergner Scharnweber, H. Worch, J. Ndop, T. J. Kim and W. Grill, J. Mater. Sci. Mater. Med. 12 (2001) 225.

    Google Scholar 

  23. R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, Nature 399 (1999) 668.

    Google Scholar 

  24. R. Roy, D. K. Agrawal, K. Dinesh and J. Cheng, U.S. Patent No. 6,183,689 (2001).

  25. M. G. Kutty, S. Bhaduri, J. R. Jokisaari and S. B. Bhaduri, Ceram. Eng. Sci. Proc. 22 (2000) 587.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutty, M.G., Bhaduri, S.B. Gradient surface porosity in titanium dental implants: relation between processing parameters and microstructure. Journal of Materials Science: Materials in Medicine 15, 145–150 (2004). https://doi.org/10.1023/B:JMSM.0000011815.50383.bd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000011815.50383.bd

Keywords

Navigation